
FlatStore: An Efficient Log-Structured Key-Value
Storage Engine for Persistent Memory

Youmin Chen♭†, Youyou Lu♭†, Fan Yang♭†, Qing Wang♭†, Yang Wang‡, Jiwu Shu♭†∗
Department of Computer Science and Technology, Tsinghua University♭

Beijing National Research Center for Information Science and Technology (BNRist)†
The Ohio State University‡

Abstract
Emerging hardware like persistent memory (PM) and high-
speed NICs are promising to build efficient key-value stores.
However, we observe that the small-sized access pattern in
key-value stores doesn’t match with the persistence granu-
larity in PMs, leaving the PM bandwidth underutilized. This
paper proposes an efficient PM-based key-value storage en-
gine named FlatStore. Specifically, it decouples the role of
a KV store into a persistent log structure for efficient stor-
age and a volatile index for fast indexing. Upon it, FlatStore
further incorporates two techniques: 1) compacted log for-
mat to maximize the batching opportunity in the log; 2)
pipelined horizontal batching to steal log entries from other
cores when creating a batch, thus delivering low-latency
and high-throughput performance. We implement FlatStore
with the volatile index of both a hash table and Masstree. We
deploy FlatStore on Optane DC Persistent Memory, and our
experiments show that FlatStore achieves up to 35 Mops/s
with a single server node, 2.5 - 6.3 times faster than existing
systems.

CCS Concepts • Information systems→ Information
storage systems.

Keywords key-value store, log structure, persistent mem-
ory, batching

ACM Reference Format:
Youmin Chen, Youyou Lu, Fan Yang, Qing Wang, Yang Wang, Jiwu Shu.
2020. FlatStore: An Efficient Log-Structured Key-Value Storage Engine for
Persistent Memory. In Proceedings of the Twenty-Fifth International Confer-
ence on Architectural Support for Programming Languages and Operating

∗Jiwu Shu is the corresponding author.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are not
made or distributed for profit or commercial advantage and that copies bear
this notice and the full citation on the first page. Copyrights for components
of this work owned by others than ACMmust be honored. Abstracting with
credit is permitted. To copy otherwise, or republish, to post on servers or to
redistribute to lists, requires prior specific permission and/or a fee. Request
permissions from permissions@acm.org.
ASPLOS ’20, March 16–20, 2020, Lausanne, Switzerland
© 2020 Association for Computing Machinery.
ACM ISBN 978-1-4503-7102-5/20/03. . . $15.00
https://doi.org/10.1145/3373376.3378515

Systems (ASPLOS’20), March 16–20, 2020, Lausanne, Switzerland. ACM, NY,
NY, USA, 15 pages. https://doi.org/10.1145/3373376.3378515

1 Introduction
Key-value store with the simple abstraction of interfaces (i.e.,
Put,Get) has become a fundamental component in datacenter
infrastructures [14, 21, 38, 45]. Recently, the increasing de-
mands in fast data storage and processing invoke the unique
question on how to design efficient key-value stores to handle
write-intensive and small-sized workloads, which is required
in today’s production deployments [8, 21, 34, 37, 45, 48, 54].
Fortunately, emerging networking and storage technolo-

gies, such as InfiniBand and persistent memory (PMs), bring
the new opportunity to achieve this goal: PCM [35, 50, 63],
ReRAM [9], and the recently released Optane DC Persistent
Memory [6] (abbreviated as “Optane DCPMM” in the rest of
the paper), are capable of providing data persistence while
achieving comparable performance and higher density than
DRAM. Similarly, recently released 100 Gbps InfiniBand net-
work also delivers sub-microsecond latency and extremely
high message rates [5]. This work studies how to maximize
the performance of key-value stores with the help of such
new devices. It is motivated by our in-depth analysis of many
recent KV stores [15, 26, 27, 44, 47, 59, 61, 64], whose access
pattern doesn’t match with the access granularity in PMs.
Both our analysis and previous works [47, 49, 61] report

that KV stores generate a huge number of small-sized writes
(e.g., a large proportion of KV pairs contain only several
or tens of bytes in the production workloads [8, 37, 45]).
Furthermore, the index structure inside a KV store causes a
great amplification of writes. For a hash-based index, multi-
ple entries need to be rehashed if their keys conflict or the
hash table is resized [64]. A tree-based index also needs to
frequently shift the index entries in each tree node to keep
them ordered, and merge/split the tree nodes to keep the tree
balanced [15, 27, 47, 61]. Most of such updates only involve
updating one or several pointers. For failure atomicity, the
updated data needs to be explicitly persisted with extra flush
instructions (e.g., clflushopt/clwb). However, CPUs flush
data at cacheline granularity (64 B in AMD and x86 platform),
and PMmay have even coarser internal block size (e.g., 256 B
in Optane DCPMM [29]), which is larger than the write sizes
in most cases, wasting the hardware bandwidth dramatically.
We deploy a persistent KV index named FAST&FAIR [27] on

Session 12A: Storage — Cache is the
answer, what is the question?

ASPLOS’20, March 16–20, 2020, Lausanne, Switzerland

1077

https://doi.org/10.1145/3373376.3378515

Optane DCPMM, and observe that it achieves 3.5 Mops/s for
Put operations, which is merely 6% the raw throughput of
Optane DCPMM.
A classic approach to address the above problems is to

manage the KV store with a log structure [36, 46, 52], so
all the updates can be simply appended to the log. More
critically, by batching multiple requests from the clients and
performing the updates together, the write overhead is amor-
tized across multiple requests. Note that the performance
benefit of batching is limited by the number of updates we
can perform together. Thus, this idea is very successful for
HDD or SSD since they have better sequential write per-
formance, and each batch can contain multiple consecutive
sectors (up to tens of MBs). However, its application in NVM-
based systems is more challenging: 1) Our measurements
reveal that, as long as the I/O size is larger than the minimal
I/O unit (i.e. 256B block size) and there are enough threads
to perform I/Os concurrently, sequential and random writes
to Optane DCPMM have very similar bandwidth, so it is not
beneficial to batch more data than a single I/O unit. More-
over, PM has much finer access granularity (i.e., 64 B flush
size and 256 B block size), which can only accommodate
a very limited number of log entries if we simply record
every memory updates in the log. 2) Batching increases la-
tency inevitably, preventing its adoption in emerging PMs
and high-speed NICs, since low latency is one of their major
benefits. Because of these challenges, we find, although some
recent works [25, 60] apply the log-structured idea in PM-
based storage systems, they mainly adopt the log structure
to ensure failure atomicity or reduce memory fragmentation,
but do not explore the opportunities of batching to amortize
the persistence overhead.
This paper proposes FlatStore, a persistent memory KV

storage engine, to revitalize the log-structured design in
PMs. The key idea is to decouple the role of a KV store into
a volatile index for fast indexing and a persistent log struc-
ture for efficient storage. Compact log format and pipelined
horizontal batching techniques are then introduced to ad-
dress the challenges mentioned above, so as to achieve high
throughput, low latency, and multi-core scalability.

Compact log format is introduced to address the first chal-
lenge (i.e., improve batching chance). FlatStore only stores
index metadata and small KVs in the persistent log. Large
KVs are stored separately with an NVM allocator, because
they cannot benefit from batching in the log anyway. We
then use the operation log technique [12] to format the log
entries, which simply describes each operation, instead of
recording every index updates, so as to minimize the space
consumption of the index metadata. Note that we don’t need
to persist the allocation metadata (i.e., bitmap) within the
NVM allocator, since we observe that there is a redundancy
between the index metadata in the log and the metadata
within the NVM allocator: the KV index maps a key to the
address of the KV on NVM; the NVM allocator records all

the allocated addresses, which are exactly the addresses of
the KVs on NVM. By using lazy-persist allocator to manage
the NVM space for each allocation, we can deterministically
reconstruct the allocation metadata in the NVM allocator
by scanning the log after rebooted. In this way, FlatStore
restricts the size of each log entry to a minimum of 16 bytes,
enabling multiple log entries to be flushed together to PMs.

To address the second challenge (i.e., reduce latency when
batching), FlatStore adopts a “semi-partitioned” approach. It
still leverages the existing per-core processing and user-level
polling mechanism [23, 30] when serving the client requests,
to avoid high software overhead and lock contention, but
incorporates a novel technique named Pipelined Horizontal
Batching to persist the log entries. It allows a server core to
collect log entries from other cores when creating a batch:
compared to letting each core create batches from its own
requests, this approach significantly reduces the time to ac-
cumulate enough log entries before flushing them to PM. To
mitigate the contention among the cores, pipelined horizon-
tal batching 1) carefully schedules the cores to release the
lock in advance while without compromising the correct-
ness, and 2) organizes the cores into groups to balance the
contention overhead and batching opportunity.

We implement FlatStore with in-memory index structure
of both a partitioned hash table (FlatStore-H) andMasstree [41]
(FlatStore-M). Our evaluation on Optane DCPMM shows that
they can respectively handle up to 35 and 18 million Put op-
erations per second with one server node, 2.5 - 6.3× faster
than existing systems.

2 Background and Motivation
In this section, we perform an extensive analysis on the
production key-value store workloads, and describe the mis-
match between the small-sized access pattern in existing KV
stores and the persistence granularity of PMs.

2.1 Production Key-Value Store Workloads
A large portion of items stored and manipulated by KV stores
in production environments are small-sized. For instance, the
Facebook ETC Memcached pool has 40% of items with sizes
smaller than 13 bytes, and 70% of items with sizes smaller
than 300 bytes [8]. Rajesh et al. [45] reported that 50% of
items in three Facebook pools are smaller than 250 bytes.
Many popular in-memory computation tasks, such as sparse
parameters in linear regression and graph computing, typi-
cally store small-sized key-value items [37].
Shifting from read-dominated to write-intensive. Historically,
key-value stores such as Memcached are widely used as an
object caching system, and there are much more reads than
writes [8]. However, a key-value store todaymust also handle
write-intensive workloads, e.g., the frequently-changing ob-
jects [7], the popular e-commerce platform generating new

Session 12A: Storage — Cache is the
answer, what is the question?

ASPLOS’20, March 16–20, 2020, Lausanne, Switzerland

1078

transactions at an extremely fast rate [21], and the emerging
serverless analytics exchanging short-lived data [34].

2.2 Small Updates Mismatch with Persistence
Granularity

A typical persistent memory key-value store mainly consists
of two parts: 1) a persistent index (e.g., tree, hash table) to
find the key-value records and 2) a storage manager (i.e.,
NVM allocator [3, 11]) to store the actual KV pairs. These
systems store KV records in NVM but store index in various
ways: some of them (e.g., CDDS-Tree [57], wB+-Tree [15],
FAST&FAIR [27], CCEH [44] and Level-Hashing [64]) store
the whole index in NVM; some of them (e.g. FPTree [47]
and NV-Tree [61]) only store the leaf nodes of the index
tree in NVM but store the inner nodes directly in DRAM;
some of them (e.g. Bullet [26] and HiKV [59]) manage two
mirrored indexes (one in DRAM and the other in NVM) and
use backend threads to synchronize them. In such designs,
a put operation usually involves multiple updates to NVM,
including ➀ an update to the actual KV, ② an update to the
metadata inside the allocator, and ③ multiple updates to the
index. For ➀, a large proportion of KV pairs in production
workloads are small-sized. For③, updating the index structure
often causes a huge amplification of NVM writes: A hash table
needs to move the index entry to its alternative slot when the
two keys conflict, and rehash the buckets when the hash table
is resized. Tree-based indexes also need to shift the entries
in each leaf node to keep them sorted, and merge/split the
tree nodes to keep the tree balanced. Most of such updates
only involve modifying one or several pointers.
Optimizations of modern processors and compilers may

reorder the store operations from CPU cache to the NVM.
Hence, to prevent data from being lost or partially updated
in case of system failure, the KV store needs to either care-
fully order updates or log updates first, which need to be
flushed from volatile CPU caches to NVM. Cacheline flush
instructions (e.g., clflush, clflushopt and clwb) and memory
fence instructions (e.g., mfence and sfence) are used to en-
force such ordering. However, these flush instructions flush
data with cacheline granularity, which is typically 64 B, and
PM has even coarser internal write granularity (256 B in
Optane DCPMM [29]). Hence, there is a mismatch between
the write size in KV stores and the update granularity in the
hardware, wasting the PM bandwidth dramatically.
We investigate such persistence problem by analyzing

FAST&FAIR [27] on Optane DCPMM. FAST&FAIR is an ef-
ficient and persistent B+-Tree which completely avoids the
logging overhead by transforming a B+-Tree to another con-
sistent state or a transient inconsistent state that readers
can tolerate. We use Put operations with 8-byte values and
measure the throughput by increasing the number of threads.
For comparison, we also measure the raw performance of
Optane DCPMM by issuing 64-byte random writes. Our plat-
form is equipped with 4 Optane DCPMM Persistent Memory

0

2

4

6

0

50

100

of Threads
(b)

of Threads
(a)

Write-Rnd
Write-Seq

Optane 64B Writes
FAST&FAIR

Th
ro

ug
hp

ut
 (M

op
s/

s)

1

28×

1
17× Ba

nd
w

id
th

 (G
B/

s)

(c)

0

300

600

900

La
te

nc
y

(n
s)

Write Latency

0 4 8 121620 0 10 20 30 40
Seq Rnd

In-place

Figure 1. Performance Evaluation of Intel Optane DCPMM.

DIMMs (256 GB per DIMM, 1 TB in total) and two Intel Xeon
Gold 6240M CPUs (36 cores in total). More detailed hard-
ware configuration is shown in Section 5. From Figure 1(a),
we observe that the throughput of Optane DCPMM is 17×
higher than FAST&FAIR. The most important reason is that
FAST&FAIR needs to generate multiple small-sized writes
for each operation, wasting PM bandwidth unnecessarily.
Such performance gap becomes bigger as the number of
threads increases, since Optane DCPMM has non-scalable
write bandwidth.

2.3 Empirical Study on Optane DCPMM
Izraelevitz et al. [29] has already conducted an in-depth per-
formance review of Optane DCPMM and observed some
interesting findings. In our paper, we extend their measure-
ments and make some new observations, which is helpful for
the design of FlatStore. In our evaluation, each write opera-
tion is followed by clwb and mfence instructions, ensuring
that the written data has reached Optane DCPMM (we omit
the pcommit instruction, as Intel recommends).
(1) Sequential and random access patterns have similar

bandwidth under high concurrency. Figure 1(b) summarizes
the sequential and random performance of 256 B writes.
With less than 20 concurrent threads, we can observe that
the bandwidth of Optane DCPMM is 2× or higher when
accessed in a sequential pattern. However, their bandwidth
becomes the same when there are more threads. From a
hardware perspective, sequential but concurrent access to
the device actually becomes random accesses, since each
thread writes to different addresses. Note that the figures
we measured here are lower than the actual bandwidth (i.e.,
8.6 GB/s) because we add extra flush instruction for each
write operation.

(2) Repeat flush to the same cacheline is delayed dramat-
ically. We observe that when a write operation is flushed
(via clwb), a following write and flush to the same cacheline
will be blocked for almost 800 ns (see In-place operation in
Figure 1(c)).We suspect that there are two possible reasons: 1)
clwb is issued asynchronously, and the latter clwb is blocked
until the first one is finished and such acknowledgement is

Session 12A: Storage — Cache is the
answer, what is the question?

ASPLOS’20, March 16–20, 2020, Lausanne, Switzerland

1079

not returned in time. 2) Optane DCPMM may have the on-
chip wear-levelling function, which blocks the latter flush
when they access the same cacheline. Anyway, such behavior
is a big problem for those storage systems with “in-place”
update manner, especially when running a skewed workload.

2.4 Challenges
A classic solution to address such mismatch is to incorporate
the log structure, which forms sequential writes by always
appending updates to the tail of the log. Log structure also
allows us to batch multiple small updates. Thus we only
need to pay the overhead of flushing data once. However, its
application in NVM-based systems is more challenging:
Log-structured storagehas less batching opportunities
in PM. Log structure is widely used in HDD and SSD-based
storage systems, since appending data to the end of the log
forms sequential writes, which are friendly to HDD and SSD.
What’s more, both of them have much coarser flushing gran-
ularity (e.g., 4 KB), so a storage system can buffer up to tens
of MBs of data before flushing them. However, as analyzed
before, Optane DCPMM shows similar performance between
sequential and random accesses under high concurrency, so
a KV store cannot benefits from sequential access anymore.
PMs also have much finer access granularity (64 B flush size
and 256 B internal block size), which limits the number of
updates we can flush together. Even worse, log structure
increases the size of each update, since each log entry needs
to encapsulate extra metadata. For example, many systems
incorporate a bitmap to keep track of the unused space. Up-
dating the bitmap in place only changes one bit; logging
such updates, however, needs to record the address, which
is usually 8B. Such amplification makes it harder to benefit
from batching.
Batching increases latency. Compared to traditional Giga-
byte Ethernet and HDD/SSD, low latency is one of the major
benefits of emerging NVMs and high-speed NICs. However,
batching requests naturally increases the latency because the
system needs to accumulate multiple requests before process-
ing them. Meanwhile, batching also conflicts with the design
principles of high-speed networks, which suggests user-level
polling and independent per-core processing to avoid con-
tention caused by shared request/thread pools—this reduces
the chances of batching requests and may further increase
the latency with imbalanced workloads.

3 FlatStore Design
3.1 Overview of FlatStore
This paper proposes FlatStore, a persistent key-value stor-
age engine with three key design principles: minimal write
overhead, low latency, and multi-core scalability. Figure 2
summarizes its high-level design components:
• Compacted OpLog (Section 3.2). FlatStore incorporates a
per-core log-structured OpLog to absorb frequent and

DR
AM

Core	1

Hash	Table

Core	2
…

PM

Core	N

Compacted
OpLog

Lazy-persist

…

B		-Tree+

Vola5le
Indexes

…

Allocator

$4.1/$4.2

$3.2

$3.2

$3.3	Pipelined	Horizontal	Batching

append append append

ClientsGet/Put/Del $4.3	RDMA	RPC

Figure 2. Architecture of FlatStore.

small-sized updates with efficient batching. To maximize
the chance of batching, FlatStore compacts each log entry
by only storing metadata and small KV pairs in it. Large
KVs are stored separately with an allocator, because they
cannot benefit from logging.

• Lazy-persist Allocator (Section 3.2). It is proposed to store
large KV items. Since the OpLog already records the ad-
dresses of large KVs, it’s unnecessary to flush the allo-
cation metadata (i.e., bitmap) anymore. We remove such
redundancy by using a multi-class based allocation policy
and lazily persisting the allocation metadata during the
runtime. After a crash, the bitmap can be recovered by
calculating the offset with the pointers in the OpLog.

• Pipelined Horizontal Batching (Section 3.3). In Flatstore,
clients send their requests to server cores through a cus-
tomized RDMA-based RPC (Section 4.3) and the server
cores are determined by the keyhashes. Hence, server cores
can persist log entries to their local OpLogs in parallel. To
maximize the chance of batching, FlatStore incorporates
Pipelined Horizontal Batching to allow a core to steal log
entries from other cores when creating a batch.
FlatStore maintains an extra copy of volatile index in

DRAM, so as to avoid the server cores from scanning the
whole OpLog when serving the Get requests. FlatStore can
use any existing index solutions. In our implementation, we
respectively deploy FlatStore with ➊ a partitioned hash table
for fast indexing (Section 4.1) and ➋ a global Masstree [41]
for efficient range searching (Section 4.2).

3.2 Compacted OpLog and Lazy-Persist Allocator
As described before, updating in a persistent key-value store
often causes a huge amplification of writes and cache flush-
ing. To address such issue, FlatStore decouples the key-value
store into a volatile index (by directly using existing index
schemes) for fast indexing, a compacted per-core OpLog to ab-
sorb small updates, and a persistent allocator for storing large
KVs. To process an update request (i.e., Put/Del), the server
core simply writes the key-value item, appends a log entry

Session 12A: Storage — Cache is the
answer, what is the question?

ASPLOS’20, March 16–20, 2020, Lausanne, Switzerland

1080

key

keyOp VersionEmd

0 2 24 88 128	bits4

Entry	1 Entry	2 Entry	3 padding cacheline-aligned

Batch	1 Batch	2

Cacheline	1 Cacheline	2

Value	(<256B)Size
96

Ptr

Op VersionEmd

Ptr-based

Val-based

Figure 3. Layout of the Log Entry with Two Cases (pointer-
based entry only stores a pointer, while value-based entry
has varied sizes with 1 - 256 B values).

at the end of its local log, and then updates the volatile index
accordingly. Thus, the persistence overhead caused by re-
hashing as in hash index and shifting/splitting/merging as in
tree index is avoided. To serve a Get request, the server core
locates a key-value item by firstly referring to the volatile
index with the given key to find the exact log entry, and
finally to the key-value item. In this way, the overhead of
scanning the whole log to find a specific key is avoided too.
Log Entry Compaction. A key design aspect of OpLog is
how to construct the layout of the log entry: the log entry
should be designed small enough to better support batch-
ing, enabling FlatStore to persist more log entries within
one flush operation. Therefore, FlatStore only places the in-
dex metadata and extremely small-sized KV items in OpLog
(256 B in our implementation, which is enough to saturate the
bandwidth of Optane DCPMM), while other large key-value
items are stored separately with an allocator. Meanwhile,
each log entry also needs to contain sufficient metadata for
normal indexing at runtime and to safely recover the lost
volatile index structure after system crashes.

We propose to incorporate the operation log technique [12]
to further compact the log entries: Instead of recording each
memory updates, the log entry only contains minimal infor-
mation for describing each operation. As shown in Figure 3,
each log entry consists of five parts, among them, Op records
the operation type (i.e., Put or Delete), Emd means whether
the key-value item is placed at the end of the log entry,
and Version is introduced to guarantee the correctness of log
cleaning (in Section 3.4). Similar to existingworks [26, 47, 61],
we use 8-byte keys. Note that FlatStore can place the keys
out of the OpLog to support larger keys, as we do with the
values. Ptr is used to point to the actual records when it is
stored out of the OpLog. Otherwise, the value, as well as its
size, are placed directly at the end of the log. To minimize
the log entry size, we only reserve 40 bits for the Ptr. This
is acceptable since the allocator only manages large KVs,
whose sizes are larger than 256 bytes, so the lower 8 bits
are dismissed (40+8 bits of pointers are capable of indexing
128 TB of NVM space). Therefore, the size of each log entry

is restricted to be 16 bytes (for pointer-based entries), indi-
cating that 16 log entries can be flushed altogether, with the
overhead equal to that of persisting a single log entry.
Padding. In FlatStore, in-place flushes to the same cacheline
(described in Section 2.3) are avoided in most cases, since all
the data is “out-of-place” updated. However, two adjacent
batches may still share the same cacheline in the OpLog,
since not every time we collect exactly 16 log entries when
building a batch (as shown at the bottom of Figure 3). Under
the circumstances, the persisting of the latter batch is delayed.
To solve this problem, we add padding at the end of each
batch to make them cacheline-aligned. This is quite difficult
for a storage system with “in-place” update manner to deal
with, especially when running a skewed workload.
Lazy-persist Allocator. Storing large KVs with an allocator
causes extra flushing overhead, since the introduced NVM al-
locator also needs to carefully maintain its private metadata,
tracking which addresses in the NVM are used and which
are free. However, we observe that there is a redundancy of
flushing between the log entry and the allocation metadata:
Once a record has been successfully inserted, the Ptr in the
log entry always points to an allocated data block storing this
record. Hence, we can lazily persist the allocation metadata
and correctly recover them after a system failure leveraging
such redundant information. The main challenge is how to
use the Ptr in each log entry to reversely locate the allocation
metadata during the recovery, since the allocator is required
to support variable-length allocation.

We propose a Hoard-like [10] lazy-persist allocator. It first
cuts the NVM space into 4 MB chunks. Further, the 4 MB
chunks are cut into different classes of data blocks, and the
data blocks in the same chunk have the same class of size.
Such cutting size is persistently recorded at the head of each
NVM chunk when it is ready for allocation. A bitmap is
also placed at the head of each chunk to track the unused
data blocks. With such design, the starting address of each
chunk is 4MB-aligned and the allocation granularity of each
chunk is specified at the head of it. Therefore, the offset of an
allocated NVM block in the chunk can be calculated directly
with Ptr in a valid log entry, enabling us to recover the bitmap
even when they fail to be persisted before system crashes.
Considering the scalability issue, these 4 MB NVM chunks
are partitioned to different server cores. Upon receiving an
allocating request, the allocator first chooses a proper class
of NVM chunk from its privately managed NVM chunks,
and then allocates a free data block by modifying the bitmap
(without flushing). For an allocation with size larger than
4 MB (which is less likely to happen in a key-value store), we
directly assign it with one or multiple contiguous chunks.
Putting everything together, a normal Put request is pro-

cessed at the server-side with the following steps:
1) Allocate a data block from the lazy-persist allocator, copy

the record into it with the format of (v_len,value) and
persist it. (This step is skipped for small KV record)

Session 12A: Storage — Cache is the
answer, what is the question?

ASPLOS’20, March 16–20, 2020, Lausanne, Switzerland

1081

+1

+1

+1

+3

+4

+1

+1

+1

+1

+1

+3

+4

+1

+1

+1

+1

+3

+4

+3

+3

+6

+6

+2

+3

+3

+3

+3

+3

+3

(a)	Non-batch (b)	Ver6cal	Batch (c)	Naive	HB (d)	Pipelined	HB

Poll	Req Process Wait

C2 C3 C1 C2 C3 C1 C2 C3 C1 C2 C3

Core
+N

Req	Num

C1

New	Msg

+1 +1 +1

Figure 4. Sequence Diagram of Different Execution
Model (gray dashed line indicates a new request arrives,
“+N Req Num” means N of requests are batched together for
persistence, red arrow means the action of stealing).

2) Initialize a log entry with each field filled: Ptr points to
the block in step 1 if the record is placed out of the OpLog,
and the Version is increased by one if this record already
exists. Then, append the log entry to the log and persist it.
Finally, update the tail pointer to point to the tail of the
log and persist it.

3) Update the corresponding entry in the volatile index to
point to this log entry.

For crash consistency, we need to “out-of-place” update a
record if it already exists (instead of overwriting). Therefore,
except for the above three steps, we need to free the old data
block once the inserting finishs. Note that the freed data
block can be reused immediately since the “read-after-delete”
anomaly doesn’t occur in FlatStore: the KVs are forwarded to
a specific core according to the keyhash, and the operations
with the same key go to the same core and are serialized by a
conflict queue (see Section 3.3). A Put operation is considered
persistent only after step 2 is finished. If a system failure
occurs after step 2, FlatStore can still recover the volatile
index and the allocation bitmap by replaying the OpLog
(Section 3.5). To process the Delete operation, we simply
append a tombstone log entry like RAMCloud [53].

We can observe that each Put operation in FlatStore only
concerns three flush operations (the KV record, log entry
and the tail pointer). By directly storing the small-sized
record in the log entry, the number of flushing is further
reduced. Selectively placing the KV records in OpLog and
allocator also supports more efficient garbage collection [60].
FlatStore needs to periodically reclaim the NVM spaces when
the log entries in OpLog become obsolete (Section 3.4). By
only placing the 16-byte log entries and tiny KV items in the
OpLog, the log compaction doesn’t occupy CPU resources
too much.

3.3 Horizontal Batching
The OpLog is designed to better support batching. Following
this way, the server core can receive multiple client requests

D
RA

M

Core	1

Data	Chunks

Core	2

Data	Chunks

…

PM

Core	i

Data	Chunks

OpLog

Req	Pool Req	Pool Req	Pool

Tail	Ptr

(Leader)

1

3

4

5

7

1

3

2

85
6

Global
Lock

24 …

OpLog OpLog

VolaFle	Index

…

Figure 5. FlatStore with Horizontal Batching (The leader
executes the steps with black circled numbers, while others
follow the white circled ones).

from the network and process them all together. Assum-
ing that N Put requests arrive, FlatStore first allocates the
data blocks to store and persist the KV items for each of
the requests. It then merges their log entries and flushes
them together to the OpLog. Finally, the in-memory index
is updated accordingly. With batching, the number of PM
writes is reduced from original 3N to N + 2. Two reasons ac-
count to such reduction: (1) With the design of append-only
OpLog, the log entries from different requests get the chance
to be flushed together; (2) Updating of the Tail Pointer of the
OpLog occurs from once-per-request to once-per-batch. For
small KV items that are directly stored in the operation log,
the persist operations can be further reduced.
Since the above batching scheme only batches on the re-

quests received by each server core, we call this approach
as vertical batching. Vertical batching reduces the persisting
overhead, but it introduces the side-effects of higher latency:
it reduces the chance of batching per core, so each core takes
longer to accumulate enough requests. Figure 4 (a) and (b)
compare the effects of (non-)batching and we can observe
that vertical batching increases the response latency signifi-
cantly. However, the sub-microsecond hardware (e.g., RDMA
and NVM) drives us to achieve low-latency request process-
ing [48, 54]. To this end, we propose horizontal batching. It
allows a server core to steal the to-be-persisted log entries
from other cores when building a batch.

Pipelined Horizontal Batching (Pipelined HB). As
shown in Figure 5, to steal the log entries from other cores,
we introduce 1) a global lock to synchronize the cores, and 2)
a per-core request pool for inter-core communication. A Put
operation is decoupled into three phases, which are l-persist,
g-persist and volatile phase respectively. Space allocation
and persisting of KV items are finished in l-persist phase,
persisting of log entries is done in g-persist phase, and the
update of volatile index lies in the volatile phase.
The steps of a naive HB approach is shown in Figure 5.

After finishing the l-persist phase (❶/➀), each CPU core
puts the addresses of the to-be-persist log entries in local
request pool (❷/➁), and tries to acquire the global lock (❸/➂).

Session 12A: Storage — Cache is the
answer, what is the question?

ASPLOS’20, March 16–20, 2020, Lausanne, Switzerland

1082

The core that successfully acquires the lock becomes the
leader (i.e., Core i), while the others act as followers and wait
for the completion of the posted requests (➃). The leader
then fetches the log entries from other cores (❹). We simply
let the leader scan all the cores and fetch all exiting log
entries, instead of using the more complicated strategy (e.g.,
timeout or other threshold settings), to reduce latency. The
collected log entries aremerged together and appended to the
OpLog in a batch manner (❺ and❻). After this, it releases the
global lock (❼) and informs other cores of the completion of
persisting. Finally, both the leader and the followers update
the in-memory index and send the response messages to the
clients (❽/➄).

We can observe that the naive approach inherits the prop-
erty of batching by stealing the requests. However, it is sub-
optimal since the processing of the three phases is strictly
ordered and most CPU cycles are spent on waiting for the
completion of log persisting (Figure 4 (c) explains this micro-
scopically). Accordingly, we further propose Pipelined HB to
interleave the execution of each phase: Once a server core
fails to acquire the global lock, it turns to poll the arrival of
the next requests and execute the logic of a second horizontal
batching. These followers only asynchronously wait for the
completion message from the previous leaders. Besides, the
leader releases the global lock as soon as it has collected the
log entries from other cores. Therefore, the log persisting
overhead is moved out of the global lock, and adjacent HBs
can be processed in parallel (shown in Figure 4 (d)).
Discussion. Pipelined HB may reorder clients’ requests:
When a server core processes a sequence of requests, the
latter Get operation may fail to see the effect of a previous
Put with the same key. Such case happens when the Put is
still processed by the leader, and the server core switches to
process the following requests. To address this issue, each
server core maintains an exclusively owned conflict queue
to track the requests being served. Any later requests will
be delayed if their keys conflict.
Pipelined HB is similar to work stealing in stealing log

entries from other cores, however, they work in a different
way: Work-stealing rebalances the loads by letting the idle
thread steal requests from busy ones. Pipelined HB relies on
work-stealing, but works in the opposite way by letting one
core get all request, to reduce latency in batching.
PipelinedHBwith Grouping.On a multi-socket platform,
acquiring the global lock by a large number of CPU cores
leads to significant synchronization overhead. To address
this issue, the server cores are partitioned into groups to
execute pipelined HB. Therefore, a proper group size bal-
ances the global synchronization overhead and the batch size:
Smaller group size incurs low locking overhead, with the
cost of decreased size of each batch, or conversely. Based on
our empirical results, arranging all the cores from the same
socket into one group provides the optimal performance.

3.4 Log Cleaning
To avoid the length of the OpLog from growing arbitrarily,
we need a method to compact it and drop those obsolete
log entries. In FlatStore, each server core maintains an in-
memory table to track the usage of each 4MB chunk in the
OpLog when processing the normal Put and Delete requests.
Whether a block is inserted into a reclaim list depends on
both the ratio of live entries in it and the total number of free
chunks. Each HB group launches one background thread to
clean the log (denoted as the cleaner). Thus, log recycling is
executed in parallel between different groups. The cleaner
periodically checks the reclaim list to find the victim chunks.
To recycle a NVM chunk, the cleaner first scans the chunk to
determine the liveness of each log entry. This is achieved by
comparing the Version of the log entry with the newest one in
the in-memory index. Then, all the live log entries are copied
to a newly allocated NVM chunk. Identifying the liveness
of tombstones (for Del) is more complicated [53], which can
be safely reclaimed only after all the log entries related to
this KV item have been reclaimed. After that, the cleaner
updates the corresponding entries in the in-memory index
to point to their new locations with atomic CAS. Finally, the
old block is freed by putting it back to the allocator. When
the new NVM chunk is filled, it then links this block to the
OpLog accordingly. The address of the new NVM chunk also
needs to be tracked, to prevent it from being lost in case of
system failures. We record such addresses in a journal field
(a predefined area in PM), which can be reread during the
recovery.

3.5 Recovery
We describe the recovery of FlatStore after a normal shut-
down and system failure in this section.

Recovery after a normal shutdown. Before a normal
shutdown, FlatStore copies the volatile index to a predefined
location of NVM, and flushes the bitmap of each NVM chunk
as well. Finally, FlatStore writes a shutdown flag to indicate
a normal shutdown. After a reboot, FlatStore firstly checks
and reset the state of this flag. If the flag indicates a normal
shutdown, FlatStore then loads the volatile index to DRAM.

Recovery after a system failure. If the shutdown flag
is invalid, the server cores need to rebuild the in-memory
index and the bitmaps by scanning their OpLogs from the
beginning to end. The NVM chunks tracked by the journal
(mentioned in Section 3.4) are scanned too. The Key of each
scanned log entry is firstly used to locate the slot in the
volatile index. A new entry is inserted in the volatile index
if we cannot find such a slot. Otherwise, it judges whether
or not to update the pointer of this index entry by further
comparing the Version number. With Ptr field, the allocation
metadata (i.e., bitmaps) is set as well. Based on such design,
FlatStore only needs to sequentially scan the OpLog to re-
cover all the volatile data structures. In our experiments, it

Session 12A: Storage — Cache is the
answer, what is the question?

ASPLOS’20, March 16–20, 2020, Lausanne, Switzerland

1083

only takes 40 seconds to recover 1 billion KV items. Such
recovery time is tolerable since: 1) Many production work-
loads [8, 45] typically have a wide distribution of value sizes
(small values dominate in terms of number while large ones
dominate in space consumption) and thus have less index to
recover in normal cases. 2) To shorten such recovery time,
FlatStore also supports to checkpoint the volatile index into
PMs periodically when the CPU is not busy.

4 Implementation
4.1 FlatStore-H: FlatStore with Hash Table
FlatStore can use any existing indexes as its volatile index. In
our implementation, we deploy CCEH [44] in DRAM to work
as the volatile index. Specifically, CCEH is partitioned into
ranges with separate keyhash, and each core owns a CCEH
instance. Hence, they can modify the hash table without any
locking overhead. Since the index persistence has already
been guaranteed by the OpLog, we place CCEH directly
in DRAM and remove all its flush operations. A client will
directly send a request to the specific core that is responsible
for the key of this request (through a customized RPC in
Section 4.3). Each core in FlatStore only updates its own
volatile index, but persists log entries with pipelined HB.
Each bucket in CCEH containsmultiple index slots, including
1⃝ an array of Keys and co-located Versions to distinguish
different KV items 2⃝ and an array of pointers pointing to
the log entries in the OpLog.
The partitioned design can lead to load imbalances for

skewed access patterns. However, horizontal batching is able
to largely mitigate such imbalance: It spreads the load of per-
sisting log operations, which are the most time-consuming
part, between the cores. Our experiments also exhibit that
FlatStore is good at handling skewed workloads.

4.2 FlatStore-M: FlatStore with Masstree
Since many existing persistent key-value stores [15, 47, 57,
61] build tree structures to support ordered/range searching,
we also implement FlatStore with a tree-based index named
Masstree [41]. It is well-known for its multi-core scalability
and high efficiency. To support range searching, a global
Masstree instance is created at startup and shared by all the
server cores. The keys, versions and pointers are stored at
leaf nodes. Similar to FlatStore-H, the clients still choose a
specific server core according to the hash value of the key
to post their requests, so as to reduce the chance of conflicts
when updating the Masstree.

4.3 RDMA-based FlatRPC
RDMA is capable of directly accessing the remote memory
without the involvements of remote CPUs. It provides two
types of verbs: (1) Two-sided, such as RDMA send/recv. (2)
One-sided, such as RDMA read/write. RDMA requests are
sent over Queue Pairs (QPs). Similar to the FaRM RPC [23],

Socket	0 Socket	1

Msg Buf Msg Buf

Msg Buf

Msg Buf
C2

C1

Msg Buf

NIC

Msg Buf
1

2

3.0

3.1

4

1

2

34
Delegate

1 Request 2 Process 3 MMIO 4 Response3.1

QPI

Core

Figure 6. Data Flow of FlatRPC. C1 sends a request to its
agent core (red dashed line) and C2 sends to a normal core
(black solid line).

we use RDMA write verb to send both request and re-
sponse messages between the clients and servers. As de-
scribed above, FlatStore requires that a client can send re-
quests to server cores with IDs specified by this client, indi-
cating that each server node has to create Nt × Nc of queue
pairs (where Nt is the number of cores per server and Nc
is the number of clients). This can lead to severe scalability
issue when the number of clients increases, since the NIC
has limited cache space [17, 23, 32, 33].
To support efficient message passing, we introduce the

RDMA-based FlatRPC, which lets the clients directly write
requests to the message buffer of a server core, but reply
messages are delegated to the agent core to send back. When
a client connects to each server node, only one QP is created
between it and an agent core in the server. The agent core
is randomly chosen from the socket close to the NIC. Each
server core also pre-allocates a message buffer for this client
to store the incoming messages, but sharing a single QP. As
shown in Figure 6, to post a message, the client writes the
message payload directly to the message buffer of a specific
core (step 1). Each server core polls the message buffer to
extract the new message and process it (step 2). After this,
a response message is prepared and posted according to
the following rule: (1) If this core happens to be the agent
core, it directly posts a write verb with Memory Mapped
I/O (MMIO) (step 3 of the red dashed line). (2) Otherwise,
it delegates the verb command to the agent core through
shared memory (step 3.0 and 3.1). When the NIC receives the
verb, it fetches the payload and sends it to the client (step 4).

FlatRPC reduces the number of QPs to Nc, with the ex-
tra cost of the inter-core delegation. However, we find that
it’s worth the effort because (1) the verb commands are
light-weight (several bytes). Besides, the agent core can use
prefetch instructions to accelerate the delegation; (2) the dele-
gate phase gathers all the verb commands to the socket close
to the NIC, further reducing the MMIO overhead. On our
platform (in Section 5), FlatRPC provides throughput of 52.7
Mop/s with one FlatRPC server and 12 client nodes (12 × 24
client threads), which is 1.5× higher than that of “all-to-all
connected” approach.

Session 12A: Storage — Cache is the
answer, what is the question?

ASPLOS’20, March 16–20, 2020, Lausanne, Switzerland

1084

RDMA offloading. Some works suggest to offload the
processing of Get to the clients with one-sided RDMA verbs
(e.g., RDMA read) [42, 43, 58], so as to relieve the burden
of server CPUs. In our implemented prototype of FlatStore,
however, we observe that the overall throughput based on
RDMA read is respectively 57% and 21% slower than the
two-sided approach (i.e., RPC) for 100%-Get and 50%-Get
workloads. This is because we need to post multiple RDMA
reads to locate the KV items remotely. Our experimental
results are also consistent with HERD’s [31]. Therefore, in
FlatStore, both Get and Put requests are processed at server-
side through RPC primitives.

5 Evaluation
In this section, we evaluate the performance of FlatStore and
other existing KV stores. We also conduct experiments to
analyze the benefits of each mechanism design.
Hardware Platform. Our cluster consists of one server
node and 12 client nodes. The server node is equipped with
four Optane DCPMM (256 GB per DIMM, 1 TB in total),
128 GB of DRAM memory and two 2.6GHz Intel Xeon Gold
6240M CPUs (36 cores in total), installed with Ubuntu 18.04.
Each client node has 128 GB of DRAM memory and two
2.2GHz Intel Xeon E5-2650 v4 CPUs (24 cores in total), in-
stalled with CentOS 7.4. All these servers are connected
with a Mellanox MSB7790-ES2F switch using MCX555A-
ECAT ConnectX-5 EDR HCAs, which support 100Gbps In-
finiband network. To explore the peak throughput that each
system can achieve, we let the clients post multiple requests
asynchronously and poll the completion in a batch man-
ner [32, 33] (default client batchsize is 8).
Compared Systems. Four state-of-the-art persistent index
schemes are chosen to compare with (see Table 1). 1) Hash-
based. Level-Hashing [64] and CCEH [44] are used to com-
pare with FlatStore-H. We directly use their default settings.
In our implementation, clients directly route their requests
to a specific core according to the key hash, so we create
a Level-Hashing/CCEH instance for each server core and
remove all the lock operations inside them. As the hash table
resizing impacts their performance, the hash table is created
with big enough size and we collect the performance be-
fore they are resized. 2) Tree-based. We use FPTree [47] and

Table 1. Description of Compared Index Schemes.

Type Name Description

Hash CCEH Three level (directory, segments,
buckets), 4 slots in a bucket

Level-Hashing Two-level (top/bottom level),
4 slots in a bucket

Tree FPTree Inner nodes are placed in DRAM.
FAST&FAIR All nodes are placed in PM.

Th
ro

ug
hp

ut
 (M

ill
io

n
O

ps
/s

)
Value Length (Bytes)

(a) Uniform

Level-Hashing CCEH FlatStore-H

(b) Skew

0

10

20

30

0

10

20

30

8 64 128 256 512 1K

Figure 7. Put Performance of FlatStore-H.

FAST-FAIR [27] to compare with FlatStore-M. FPTree is not
open-sourced so we implement it based on STX B+-Tree1.
Similar to FlatStore-M, a single FPTree/FAST-FAIR instance
is shared by all the server cores to support range search. All
the compared index schemes store the KV records with our
proposed Lazy-persist allocator, while only storing a pointer
in the index to point to the actual data.

5.1 YCSB - Microbenchmark
We first evaluate the Put performance of FlatStore by vary-
ing the item size and skewness with YCSB workloads [19].
All of them have the key range of 192 million and key size
of 8 bytes. The skew workload uses a zipfan distribution
of key popularity (skewness of 0.99, the default setting in
YCSB). FlatStore targets as improving the performance of
write-intensive and small-sized workloads, so we only show
the result of Put operation in this section, more detailed
evaluation with higher Get ratio is given in Section 5.2.
FlatStore-H. The experimental results are shown in Figure 7
and we make the following observations:
First, FlatStore-H shows higher throughput than Level-

Hashing and CCEH and such performance advantage is es-
pecially obvious for small-sized workloads. For 8-byte val-
ues, FlatStore-H achieves 35 Mops/s for uniform workloads,
2.5 times and 3.2 times the throughput of CCEH and Level-
Hashing; and 34 Mops/s for skew workloads, 2.8 times and
5.4 times higher than the other two systems. FlatStore-H’s
high efficiency comes from the following aspects: 1) By in-
troducing the compacted OpLog, FlatStore-H reduces the
1 https://panthema.net/2007/stx-btree

Session 12A: Storage — Cache is the
answer, what is the question?

ASPLOS’20, March 16–20, 2020, Lausanne, Switzerland

1085

https://panthema.net/2007/stx-btree

Th
ro

ug
hp

ut
 (M

ill
io

n
O

ps
/s

)

Value Length (Bytes)

(a) Uniform

FAST&FAIR FPTree FlatStore-FF FlatStore-M

(b) Skew

0

5

10

15

20

0

5

10

15

20

8 64 128 256 512 1K

Figure 8. Put Performance of FlatStore-M.

number of persisting operations for each Put operations by
simply appending a log entry. Instead, both CCEH and Level-
Hashing need to flush the index entry, bitmap in the bucket,
and the actual KV record in the allocator for each update.
2) When the two keys conflict, Level-Hashing needs to re-
hash the related entries, and CCEH also needs to split the
segments when they are full, which amplifies the flushing
times. 3) FlatStore-H efficiently merges the small-sized log
entries from multiple cores with pipelined HB, and persists
them in a batch manner, which further reduces the number
of writes. The performance of CCEH is slightly higher than
Level-Hashing, since it adopts different collision policy, re-
ducing the chance of conflicts. All the three systems show
very close performance for large KVs since they are mainly
restricted by the PM bandwidth.

Second, FlatStore-H achieves higher performance improve-
ment with skew workloads. Both CCEH and Level-Hashing
“in-place” update the index structure (e.g., the bitmap, 8-byte
pointers, etc.), so the chance to repeatedly flush the same
cacheline is increased with skew workloads, which impacts
their performance to some extent. Besides, we observe that
the “request stealing” policy in pipelined HB has its nature to
better support skew workloads: those non-busy cores have
higher opportunity to become the leader, and help the busy
cores to flush the log entries. In CCEH and level-Hashing,
the requests are strictly partitioned to different cores so
the busiest core restricts the overall performance. We also
notice that FlatStore-H loses such performance advantages
with large KVs. This is because the large KVs are still per-
sisted locally by each server core (similar to CCEH and Level-
Hashing).

Put/Get Ratio (Put:Get)
(a)

Th
ro

ug
hp

ut
(M

ill
io

n
O

ps
/s

)

Put/Get Ratio (Put:Get)
(b)

Level-Hashing
CCEH
FlatStore-H

FAST&FAIR
FPTree
FlatStore-FF
FlatStore-M

0

10

20

30

40

100:0 50:50 5:95 100:0 50:50 5:95

Figure 9. Throughput with Facebook ETC.

FlatStore-M.To exclude the performance advantages brought
by Masstree, we also implement FlatStore-FF by replacing
Masstree with FAST&FAIR. Similarly, FAST&FAIR is placed
in DRAM to work as the volatile index structure. The exper-
imental results are shown in Figure 8 and we observe that:
1) The performance improvements brought by FlatStore-
M is more significant than FlatStore-H. For 8-byte records,
FlatStore-M can perform 18 Mops/s with the uniform work-
load, 3.4 times and 4.5 times the throughput of FPTree and
FAST&FAIR. For skewworkload, the throughput of FlatStore-
M is 16 Mops/s, 6.3 times and 3.4 times higher than FP-
Tree and FAST&FAIR. This is mainly because the tree nodes
are frequently merged and split in these persistent indexes,
which is more likely to cause write amplification. 2) FlatStore-
M has higher throughput than FlatStore-FF, especially for
the uniform workload. Masstree is designed to improve the
multicore scalability of B+-Tree in DRAM. Therefore, it is
more efficient than the volatile version of FAST&FAIR. Even
so, the throughput of FlatStore-FF is still far higher than
FPTree and FAST&FAIR for all the evaluated workloads. 3)
FPTree shows higher throughput than FAST&FAIR with uni-
form workloads. This is because FPTree only places its leaf
nodes in PM and other inner nodes are directly placed in
DRAM. Instead, all the tree nodes in FAST&FAIR are placed
in NVM, causing much more persistence overhead. Even
so, FAST&FAIR has higher performance with skew work-
load since it incorporates more fine-grained lock design and
causes less contention.

5.2 Facebook ETC Pool - Production Workload
We emulate the ETC pool at Facebook [51] as the produc-
tion workload to evaluate the behavior of FlatStore. It has a
trimodal item distribution, where the item can be tiny (1-13
bytes), small (14-300 bytes) or large (larger than 300 bytes).
Out of the key space (192 million), 40% correspond to tiny
items, 55% correspond to small items and the remaining 5%
to large ones. We use zipfian distribution (0.99) on the sets
of tiny and small items, which is representative of the strong
skew of many production workloads. Large items, instead,

Session 12A: Storage — Cache is the
answer, what is the question?

ASPLOS’20, March 16–20, 2020, Lausanne, Switzerland

1086

0

10

20

30

5 10 15 20 25 30 35
of cores

Th
ro

ug
hp

ut
(M

ill
io

n
O

ps
/s

)
FlatStore-H (Uniform)
FlatStore-M (Uniform)
FlatStore-H (Skew)
FlatStore-M (Skew)

PUT
KV: 8B-64B

Figure 10. Throughput with Varying Server Cores.

are much fewer and exhibit much higher variability, and
are chosen uniformly at random [22]. ETC pool is originally
read-dominated, but we consider both read-dominated and
write-intensive workloads, corresponding, respectively, to a
95:5 and 50:50 Get:Put ratio [22]. For reference, the results
of 100%-Put are given too. The evaluation results are shown
in Figure 9 and we make the following observations:
(1) Both FlatStore-H and FlatStore-M show significant

higher throughput than the compared systems, and the per-
formance advantage over tree-based ones is more obvious.
This is also consistent with the previous evaluation results in
Section 5.1. Specifically, FlatStore-H achieves 23 Mops/s with
100:0 workloads, 2.3 and 4.1 times the throughput of Level-
Hashing and CCEH. FlatStore-M improves performance by
4× and 6× compared to that of FAST&FAIR and FPTree. We
explain the high performance of FlatStore from the following
aspects: 1) A large proportion of KVs in ETC pool are small-
sized (e.g., 95% are smaller than 300 bytes), and FlatStore is
good at handling such small-sized updates by merging them
into a larger one with batching. 2) FlatStore avoids updating
pointers as in the index structure, since it simply appends
log entries in the log. As a result, FlatStore greatly reduces
the number of PM writes.

(2) FlatStore mainly focuses on improving the write perfor-
mance, so FlatStore-H shows almost the same performance
as that of CCEH and Level-Hashing as the read/write ratio
increases. We notice that FlatStore-M still has higher perfor-
mance with 5:95 workload. This is because, in a tree-based
index, the Put operations still account for a non-negligible
part of overhead, even if it has a small proportion.

5.3 Multicore Scalability
In this section, we vary the number of server cores to re-
veal the multicore scalability of FlatStore. In our evaluation,
the cores are evenly distributed to each of the NUMA do-
main and the group size of FlatStore increases along with the
number of the allocated cores in each socket. We use both
uniform and skewed workloads (100%-Put and 64-byte KV
records) and the experimental results are shown in Figure 10.

Value Length (Bytes)

Th
ro

ug
hp

ut
(M

ill
io

n
O

ps
/s

)

CCEH
Base

+Naive HB
+Pipelined HB

0

10

20

30

8 64 128

Figure 11. Benefits of Each Optimizations in FlatStore.

We can observe that FlatStore-H and FlatStore-M scales al-
most linearly as the number of server cores increase to 26 for
both uniform and skewed workloads. In FlatStore-H, both
the in-memory hash table and the NVM space are privately
managed by each server core, so there is no synchroniza-
tion overhead between the cores. Besides, pipelined HB also
helps to rebalance the loads between different server cores,
which enables FlatStore-H to exhibit scalable performance
even with skew workloads. Similarly, by putting the scalable
volatile index (i.e., Masstree) and the efficient NVM storage
engine (i.e., FlatStore) altogether, FlatStore-M is also highly
scalable. When there are more threads, all of their perfor-
mance improvements slow down, which is mainly limited
by the PM bandwidth.

5.4 Analysis of Each Optimization
In this section, we analyze the performance improvements
brought each optimization (due to the limited space, we only
evaluate FlatStore-H).
First, we measure the benefit of compacted OpLog. To

achieve this, we implement a Base version, which keeps the
log-structured design but lets each core process one request
at a time (pipelined HB is disabled). Figure 11 (a) shows their
Put throughput with varying value sizes. We observe that
Base outperforms CCEH by 29.3% on average, because CCEH
needs to perform multiple updates in its index structure and
the actual KV records, while the log-structured design in
Base reduce the number of persistence operations.

Second, we measure the benefit of pipelined HB by imple-
menting a a naive HB version, which steals requests from
other cores, but releases the lock only after the log entries
have been persisted. Naive HB shows higher performance
than Base for small KVs, but underperforms it with 128 B val-
ues. This is because Naive HB pays less overhead to flush 8 B
or 64 B values, without delaying other server cores too much.
Pipelined HB brings significant benefit in all the cases be-
cause it 1) merges both the small-sized log entries and small
KVs into fewer cachelines and greatly reduces the number
of PM writes; 2) releases the lock in advance, so that other
server cores are enabled to execute the next batch in parallel.

Session 12A: Storage — Cache is the
answer, what is the question?

ASPLOS’20, March 16–20, 2020, Lausanne, Switzerland

1087

0

20

40

60
0

10

20

30

4

6

8

5 10 15 20 25 30 35
Throughput (Mops/s)

La
te

nc
y

(u
s)

La
te

nc
y

(u
s)

La
te

nc
y

(u
s)

Vertical Batching Pipelined HB
(a)

(b)

(c)

Client Batchsize = 1

Client Batchsize = 4

Client Batchsize = 8

Figure 12. Performance Comparison Between Pipelined HB
and Vertical Batching.

We then measure the impact of Pipelined HB on latency.
To lower latency, Pipelined HB tries to build a batch faster
by letting one core steal the log entries from its sibling cores.
To understand the effects of such design, we also implement
Vertical Batching, which lets each core scan its own message
buffers from the beginning to the end and build a batch with
the discovered new messages. Actually, Vertical Batching is
equivalent to Pipelined HB when its group size is set to 1. We
compare the throughput and latency of both Vertical Batch-
ing and Pipelined HB for a varying number of client nodes
and client batch size. We use uniform workloads with Put
operations. The latencies of Vertical Batching and Pipelined
HB are collected when the completion message is returned
to the clients. The results are shown in Figure 12 and we
make the following observations:
1) Pipelined HB exhibits comparable or higher throughput

and lower latency when there are less batching opportu-
nities. As shown in Figure 12 (a), the client batch size is
set to 1. Pipelined HB shows the same throughput and
latency as Vertical Batching when the number of clients
is 1 or 2, but it soon outperforms Vertical Batching in
terms of both throughput and latency when there are
more client nodes. We also notice that their performance
gap is further widening as the number of clients increases.
Since the requests posted by each client is infrequent, it’s
more difficult for the server cores in Vertical Batching to
accumulate enough new requests. However, Pipelined HB

0

300

600

900

Th
ro

ug
hp

ut
(M

ill
io

n
O

ps
/s

)

of

 B
lo

ck
s/

Se
co

nd

(s)

FlatStore-H GC Bandwidth

Uniform
0%-Get0

10

20

30

0 100 200 300 400 500 600

Figure 13. Efficiency of Garbage Collection.

accumulates the requests from other cores, so the cores
can easily build a batch with large size and persist them
in parallel.

2) When there are sufficient batch opportunities (as shown
in Figure 12(b) and (c)), Pipelined HB significantly outper-
forms Vertical batching in throughput, while still achieves
comparable latency. Specifically, with client batch size of
8, the throughput of Pipelined HB is 23% higher than that
of Vertical batching.
In summary, Pipelined HB is capable of providing both

high throughput and low latency. It is also gifted in adapting
to the clients’ requests with varying concurrency, and such
property of flexibility is crucial in real-world systems.

5.5 Garbage Collection Overhead
To evaluate the efficiency of log cleaning in FlatStore, we
run FlatStore-H with ETC workload (50% Get) and with a
duration of 10 minutes. As shown in Figure 13, the through-
put of FlatStore-H drops slightly from 29.8 to 27 Mops/s
(with the reduction of only 10%) when the GC process is
triggered. After that, both the throughput of FlatStore-H and
the log cleaning rate remain stable for the rest time. Several
reasons account for the efficient garbage collection: (1) The
background cleaner reclaims the blocks without blocking
the normal requests posted by the clients; (2) The OpLog
is light-weight since it only keeps the index metadata and
small KVs so the copying overhead is low; and (3) Each GC
group is equipped with a cleaner to reclaim the obsolete log
entries in parallel.

6 Related Works
NVM-based KV stores. Existing NVM-based KV stores can
be roughly divided into two types: (1) Hash-based. HiKV [59]
constructs a hybrid index to support rich key-value opera-
tions efficiently. It builds a persistent hash table for fast index
searching and a volatile B+-Tree for range scan. Bullet [26]
tries to close the performance gap between volatile and per-
sistent KV stores using a technique called cross-referencing
logs (CRLs) to keep most NVM updates off the critical path.
(2) Tree-based. A number of previous works [15, 47, 57, 61]

Session 12A: Storage — Cache is the
answer, what is the question?

ASPLOS’20, March 16–20, 2020, Lausanne, Switzerland

1088

are devoted to reducing the persistency overhead on per-
sistent B+-Tree or its variants. Both NV-Tree [61] and FP-
Tree [47] place the inner nodes in DRAM and the leaf nodes
in NVM, so as to reduce the flush operations. wB+Tree [15],
NV-Tree [61] and FPTree [47] keep the entries in each leaf
node unsorted, targeting at dismissing the data shifting over-
head in NVM. To consistently manage the NVM space and
avoid memory leak, Both Bullet [26] and FPTree [47] adopts
persistent reference pointers (a.k.a., root pointers) to track the
used data blocks. However, CDDS-Tree [57], wB+Tree [15],
NV-Tree [61] and HiKV [59] just ignore this issue, with the
risk of causing memory leak.
Log-structured Persistent Memory. LSNVMM [25] is a
log-structured transactional system for NVM. It updates the
data by appending it to the end of the log, so as to reduce
NVM space fragmentation and avoid redo/undo logging over-
head as in traditional transactional system. NOVA [60] is a
highly scalable persistent memory file system. It improves
multi-core scalability by organizing each inode with an in-
dependent log structure. For crash consistency, NOVA uses
copy-on-write technique to modify the file data and intro-
duces light-weight journal for complicated operations involv-
ing updates to multiple logs (e.g., rename). NOVA also relies
on the log entry to recover its allocation metadata. However,
it’s less challenging for a file system to achieve this since all
its data pages are 4KB-aligned. More than simply adopting
the log-structured layout, FlatStore steps further to allevi-
ates the persistency overhead by exploring the benefits of
batching.
Batch Processing. Batch processing is traditionally applied
to accelerate the network transferring and data storage respec-
tively. In terms of networking, distributed systems usually
delay the data transferring to accumulate multiple remote
requests and send them in a single batch to reduce the net-
work round-trips (e.g., the NameNode in HDFS [56]). Besides,
batch processing systems like MapReduce [20], Spark [62],
and Apache Flink [13] organize the data records into static
data sets and process them in a time-agnostic fashion. Such
coarse-grained management greatly reduces the network
interaction frequency. For data storage, as traditional hard
disks perform badly for random accesses, system software,
such as journaling file systems (e.g., EXT4 [1], XFS [28], Reis-
erFS [4]) and LSM-Tree-based databases (e.g, LevelDB [2])
often buffers the written data in DRAM, and asynchronously
flush it to the disk sequentially at checkpoint in a batch man-
ner. Different from the above batching systems, FlatStore
profits from batching without delaying the clients. Moreover,
since NVM has different flush granularity, FlatStore only
batches the small-sized metadata and KV items in the log.
RDMA and Persistent Memory. Persistent memory has
been well studied in file systems [16, 18, 24, 60], key-value
stores and data structures in the past decade. Recently, it be-
comes popular to build efficient distributed storage systems
with persistent memory and RDMA network. Octopus [39]

is a distributed file system by abstracting a shared persis-
tent memory pool to reduce redundant memory copies in
data transferring. Hotpot [55] manages the PMs from dif-
ferent nodes into a global address space, and supports fault-
tolerance via data replication. AsymNVM [40] is a generic
framework for asymmetric disaggregated non-volatile mem-
ories. It implements the fundamental primitives for building
remote data structures, including space management, con-
currency control, crash consistency and replication.

7 Conclusion
Existing KV stores generate a huge number of small-sized
writes when processing today’s popular workloads, which
mismatches with the persistence granularity in PMs. To ad-
dress this issue, we decouple the KV store into a volatile index
and log-structured storage, and thus propose a PM-based
KV storage engine named FlatStore. It manages the index
and small-sized KVs with a per-core OpLog, so as to better
support batching. Pipelined horizontal batching is also pro-
posed to provide high-throughput and low-latency request
processing. Evaluations show that FlatStore significantly
outperforms existing KV stores.

8 Acknowledgements
We sincerely thank our shepherd Yu Hua for helping us
improve the paper. We also thank the anonymous reviewers
for their feedback and suggestions. This work is supported by
the National Key Research & Development Program of China
(Grant No. 2018YFB1003301), the National Natural Science
Foundation of China (Grant No. 61832011, 61772300), the
Research and Development Plan in Key field of Guangdong
Province (Grant No. 2018B010109002), and the Project of
ZTE (Grant No. 20182002008).

References
[1] [n.d.]. Ext4. https://ext4.wiki.kernel.org/.
[2] [n.d.]. LevelDB, A fast and lightweight key/value database library by

Google. http://code.google.com/p/leveldb/.
[3] [n.d.]. The Persistent Memory Development Kit. "pmem.io".
[4] [n.d.]. ReiserFS. http://reiser4.wiki.kernel.org.
[5] 2017. Product Brief of ConnectX-5 VPI Card. "http://www.

mellanox.com/related-docs/prod_adapter_cards/PB_ConnectX-
5_VPI_Card.pdf".

[6] 2018. Intel’s Apache Pass. "https://software.intel.com/en-
us/articles/intel-optane-dc-persistent-memory-for-greater-
capacity-affordability-persistence".

[7] Amr Ahmed, Moahmed Aly, Joseph Gonzalez, Shravan Narayana-
murthy, and Alexander J. Smola. 2012. Scalable Inference in Latent
Variable Models. In Proceedings of the Fifth ACM International Confer-
ence on Web Search and Data Mining (WSDM ’12). ACM, New York,
NY, USA, 123–132. https://doi.org/10.1145/2124295.2124312

[8] Berk Atikoglu, Yuehai Xu, Eitan Frachtenberg, Song Jiang, and Mike
Paleczny. 2012. Workload analysis of a large-scale key-value store.
In ACM SIGMETRICS Performance Evaluation Review, Vol. 40. ACM,
53–64.

[9] IG Baek, MS Lee, S Seo, MJ Lee, DH Seo, D-S Suh, JC Park, SO Park, HS
Kim, IK Yoo, et al. 2004. Highly scalable nonvolatile resistive memory

Session 12A: Storage — Cache is the
answer, what is the question?

ASPLOS’20, March 16–20, 2020, Lausanne, Switzerland

1089

http://code.google.com/p/leveldb/
"pmem.io"
http://reiser4.wiki.kernel.org
"http://www.mellanox.com/related-docs/prod_adapter_cards/PB_ConnectX-5_VPI_Card.pdf"
"http://www.mellanox.com/related-docs/prod_adapter_cards/PB_ConnectX-5_VPI_Card.pdf"
"http://www.mellanox.com/related-docs/prod_adapter_cards/PB_ConnectX-5_VPI_Card.pdf"
"https://software.intel.com/en-us/articles/intel-optane-dc-persistent-memory-for-greater-capacity-affordability-persistence"
"https://software.intel.com/en-us/articles/intel-optane-dc-persistent-memory-for-greater-capacity-affordability-persistence"
"https://software.intel.com/en-us/articles/intel-optane-dc-persistent-memory-for-greater-capacity-affordability-persistence"
https://doi.org/10.1145/2124295.2124312

using simple binary oxide driven by asymmetric unipolar voltage
pulses. In Electron Devices Meeting, 2004. IEDM Technical Digest. IEEE
International. IEEE, 587–590.

[10] Emery D Berger, Kathryn S McKinley, Robert D Blumofe, and Paul R
Wilson. 2000. Hoard: A scalable memory allocator for multithreaded
applications. In ACM SIGARCH Computer Architecture News, Vol. 28.
ACM, 117–128.

[11] Kumud Bhandari, Dhruva R Chakrabarti, and Hans-J Boehm. 2016.
Makalu: Fast recoverable allocation of non-volatile memory. In ACM
SIGPLAN Notices, Vol. 51. ACM, 677–694.

[12] Silas Boyd-Wickizer, M Frans Kaashoek, Robert Morris, and Nicko-
lai Zeldovich. 2014. OpLog: a library for scaling update-heavy data
structures. (2014).

[13] Paris Carbone, Asterios Katsifodimos, Stephan Ewen, Volker Markl,
Seif Haridi, and Kostas Tzoumas. 2015. Apache Flink: Stream and
Batch Processing in a Single Engine. IEEE Data Eng. Bull. 38 (2015),
28–38.

[14] Fay Chang, Jeffrey Dean, Sanjay Ghemawat, Wilson C Hsieh, Debo-
rah A Wallach, Mike Burrows, Tushar Chandra, Andrew Fikes, and
Robert E Gruber. 2008. Bigtable: A distributed storage system for
structured data. ACM Transactions on Computer Systems (TOCS) 26, 2
(2008), 4.

[15] Shimin Chen andQin Jin. 2015. Persistent b+-trees in non-volatile main
memory. Proceedings of the VLDB Endowment 8, 7 (2015), 786–797.

[16] Youmin Chen, Youyou Lu, Pei Chen, and Jiwu Shu. 2018. Efficient
and Consistent NVMM Cache for SSD-based File System. IEEE Trans.
Comput. (2018).

[17] Youmin Chen, Youyou Lu, and Jiwu Shu. 2019. Scalable RDMA RPC on
Reliable Connection with Efficient Resource Sharing. In Proceedings
of the Fourteenth EuroSys Conference 2019 (EuroSys ’19). ACM, New
York, NY, USA, Article 19, 14 pages. https://doi.org/10.1145/3302424.
3303968

[18] Youmin Chen, Jiwu Shu, Jiaxin Ou, and Youyou Lu. 2018. HiNFS:
A Persistent Memory File System with Both Buffering and Direct-
Access. ACM Trans. Storage 14, 1, Article 4 (April 2018), 30 pages.
https://doi.org/10.1145/3204454

[19] Brian F. Cooper, Adam Silberstein, Erwin Tam, Raghu Ramakrishnan,
and Russell Sears. 2010. Benchmarking Cloud Serving Systems with
YCSB. In Proceedings of the 1st ACM Symposium on Cloud Computing
(SoCC). ACM, New York, NY, USA, 143–154.

[20] Jeffrey Dean and Sanjay Ghemawat. 2008. MapReduce: simplified data
processing on large clusters. Commun. ACM 51, 1 (2008), 107–113.

[21] Giuseppe DeCandia, Deniz Hastorun, Madan Jampani, Gunavardhan
Kakulapati, Avinash Lakshman, Alex Pilchin, Swaminathan Sivasubra-
manian, Peter Vosshall, and Werner Vogels. 2007. Dynamo: amazon’s
highly available key-value store. In ACM SIGOPS operating systems
review, Vol. 41. ACM, 205–220.

[22] Diego Didona and Willy Zwaenepoel. 2019. Size-aware Sharding For
Improving Tail Latencies in In-memory Key-value Stores.. In NSDI.
79–94.

[23] Aleksandar Dragojević, Dushyanth Narayanan, Miguel Castro, and
Orion Hodson. 2014. FaRM: fast remote memory. In 11th USENIX
Symposium on Networked Systems Design and Implementation (NSDI
14). 401–414.

[24] Subramanya R. Dulloor, Sanjay Kumar, Anil Keshavamurthy, Philip
Lantz, Dheeraj Reddy, Rajesh Sankaran, and Jeff Jackson. 2014. System
Software for Persistent Memory. In Proceedings of the Ninth European
Conference on Computer Systems (EuroSys). ACM, New York, NY, USA,
Article 15, 15 pages.

[25] Qingda Hu, Jinglei Ren, Anirudh Badam, and Thomas Moscibroda.
2017. Log-structured non-volatile main memory. In Proceedings of 2017
USENIX Annual Technical Conference (USENIX ATC).

[26] Yihe Huang, Matej Pavlovic, Virendra Marathe, Margo Seltzer, Tim
Harris, and Steve Byan. 2018. Closing the Performance Gap Between
Volatile and Persistent Key-Value Stores Using Cross-Referencing Logs.

In 2018 USENIX Annual Technical Conference (USENIX ATC 18). USENIX
Association, 967–979.

[27] Deukyeon Hwang, Wook-Hee Kim, Youjip Won, and Beomseok Nam.
2018. Endurable Transient Inconsistency in Byte-addressable Persis-
tent B+-tree. In Proceedings of the 16th USENIX Conference on File and
Storage Technologies (FAST’18). USENIX Association, Berkeley, CA,
USA, 187–200. http://dl.acm.org/citation.cfm?id=3189759.3189777

[28] Silicon Graphics Inc. [n.d.]. XFS User Guide: A guide for XFS filesystem
users and administrators. http://xfs.org/index.php/XFS_Papers_and
_Documentation.

[29] Joseph Izraelevitz, Jian Yang, Lu Zhang, Juno Kim, Xiao Liu, Amir-
samanMemaripour, Yun Joon Soh, ZixuanWang, Yi Xu, Subramanya R
Dulloor, et al. 2019. Basic performance measurements of the intel op-
tane DC persistent memory module. arXiv preprint arXiv:1903.05714
(2019).

[30] Anuj Kalia, Michael Kaminsky, and David Andersen. 2019. Datacenter
RPCs can be general and fast. In 16th USENIX Symposium on Networked
Systems Design and Implementation (NSDI 19). 1–16.

[31] Anuj Kalia, Michael Kaminsky, and David G Andersen. 2015. Using
RDMA efficiently for key-value services. ACM SIGCOMM Computer
Communication Review 44, 4 (2015), 295–306.

[32] Anuj Kalia, Michael Kaminsky, and David G Andersen. 2016. Design
Guidelines for High Performance RDMA Systems. In 2016 USENIX
Annual Technical Conference (USENIX ATC 16).

[33] Anuj Kalia, Michael Kaminsky, and David G Andersen. 2016. FaSST:
fast, scalable and simple distributed transactionswith two-sided RDMA
datagram RPCs. In 12th USENIX Symposium on Operating Systems
Design and Implementation (OSDI 16). USENIX Association, 185–201.

[34] Ana Klimovic, Yawen Wang, Patrick Stuedi, Animesh Trivedi, Jonas
Pfefferle, and Christos Kozyrakis. 2018. Pocket: Elastic Ephemeral
Storage for Serverless Analytics. In Proceedings of the 12th USENIX
Conference on Operating Systems Design and Implementation (OSDI’18).
USENIX Association, Berkeley, CA, USA, 427–444. http://dl.acm.org
/citation.cfm?id=3291168.3291200

[35] Benjamin C. Lee, Engin Ipek, Onur Mutlu, and Doug Burger. 2009.
Architecting phase change memory as a scalable dram alternative. In
Proceedings of the 36th annual International Symposium on Computer
Architecture (ISCA). ACM, New York, NY, USA, 2–13.

[36] Changman Lee, Dongho Sim, Jooyoung Hwang, and Sangyeun Cho.
2015. F2FS: A New File System for Flash Storage. In Proceedings of
the 13th USENIX Conference on File and Storage Technologies (FAST).
USENIX, Santa Clara, CA. https://www.usenix.org/conference/fast
15/technical-sessions/presentation/lee

[37] Bojie Li, Zhenyuan Ruan, Wencong Xiao, Yuanwei Lu, Yongqiang
Xiong, Andrew Putnam, Enhong Chen, and Lintao Zhang. 2017.
KV-Direct: High-Performance In-Memory Key-Value Store with Pro-
grammable NIC. In Proceedings of the 26th Symposium on Operating
Systems Principles (SOSP ’17). ACM, New York, NY, USA, 137–152.
https://doi.org/10.1145/3132747.3132756

[38] Mu Li, David G Andersen, Jun Woo Park, Alexander J Smola, Amr
Ahmed, Vanja Josifovski, James Long, Eugene J Shekita, and Bor-Yiing
Su. 2014. Scaling Distributed Machine Learning with the Parameter
Server.. In OSDI, Vol. 14. 583–598.

[39] Youyou Lu, Jiwu Shu, Youmin Chen, and Tao Li. 2017. Octopus: an
RDMA-enabled distributed persistent memory file system. In 2017
USENIX Annual Technical Conference (USENIX ATC 17). USENIX Asso-
ciation, 773–785.

[40] Teng Ma, Mingxing Zhang, Kang Chen, Xuehai Qian, Zhuo Song, and
Yongwei Wu. 2020. AsymNVM: An Efficient Framework for Imple-
menting Persistent Data Structures on Asymmetric NVM Architecture.
In the Twenty-Fifth International Conference on Architectural Support
for Programming Languages and Operating Systems. ACM.

[41] Yandong Mao, Eddie Kohler, and Robert Tappan Morris. 2012. Cache
craftiness for fast multicore key-value storage. In Proceedings of the

Session 12A: Storage — Cache is the
answer, what is the question?

ASPLOS’20, March 16–20, 2020, Lausanne, Switzerland

1090

https://doi.org/10.1145/3302424.3303968
https://doi.org/10.1145/3302424.3303968
https://doi.org/10.1145/3204454
https://doi.org/10.1145/3204454
http://dl.acm.org/citation.cfm?id=3189759.3189777
http://xfs.org/index.php/XFS_Papers_and_Documentation
http://xfs.org/index.php/XFS_Papers_and_Documentation
http://dl.acm.org/citation.cfm?id=3291168.3291200
http://dl.acm.org/citation.cfm?id=3291168.3291200
https://www.usenix.org/conference/fast15/technical-sessions/presentation/lee
https://www.usenix.org/conference/fast15/technical-sessions/presentation/lee
https://doi.org/10.1145/3132747.3132756
https://doi.org/10.1145/3132747.3132756

7th ACM european conference on Computer Systems. ACM, 183–196.
[42] Christopher Mitchell, Yifeng Geng, and Jinyang Li. 2013. Using One-

Sided RDMA Reads to Build a Fast, CPU-Efficient Key-Value Store.
In Presented as part of the 2013 USENIX Annual Technical Conference
(USENIX ATC 13). 103–114.

[43] Christopher Mitchell Kate Montgomery, Lamont Nelson, Siddhartha
Sen, and Jinyang Li. 2016. Balancing CPU and network in the cell
distributed B-Tree store. In 2016 USENIX Annual Technical Conference.
451.

[44] Moohyeon Nam, Hokeun Cha, Young-ri Choi, Sam H Noh, and Beom-
seok Nam. 2019. Write-optimized dynamic hashing for persistent
memory. In 17th USENIX Conference on File and Storage Technologies
(FAST 19). 31–44.

[45] Rajesh Nishtala, Hans Fugal, Steven Grimm, Marc Kwiatkowski, Her-
man Lee, Harry C Li, Ryan McElroy, Mike Paleczny, Daniel Peek, Paul
Saab, et al. 2013. Scaling Memcache at Facebook.. In nsdi, Vol. 13.
385–398.

[46] Patrick O’Neil, Edward Cheng, Dieter Gawlick, and Elizabeth O’Neil.
1996. The log-structured merge-tree (LSM-tree). Acta Informatica 33,
4 (1996), 351–385.

[47] Ismail Oukid, Johan Lasperas, Anisoara Nica, Thomas Willhalm, and
Wolfgang Lehner. 2016. FPTree: A hybrid SCM-DRAM persistent and
concurrent B-tree for storage class memory. In Proceedings of the 2016
International Conference on Management of Data. ACM, 371–386.

[48] John K. Ousterhout, Arjun Gopalan, Ashish Gupta, Ankita Kejriwal,
Collin Lee, BehnamMontazeri, Diego Ongaro, Seo Jin Park, Henry Qin,
Mendel Rosenblum, Stephen M. Rumble, Ryan Stutsman, and Stephen
Yang. 2015. The RAMCloud Storage System. ACM Trans. Comput. Syst.
33 (2015), 7:1–7:55.

[49] Henry Qin, Qian Li, Jacqueline Speiser, Peter Kraft, and John Ouster-
hout. 2018. Arachne: Core-aware Thread Management. In Proceedings
of the 12th USENIX Conference on Operating Systems Design and Imple-
mentation (OSDI’18). USENIX Association, Berkeley, CA, USA, 145–160.
http://dl.acm.org/citation.cfm?id=3291168.3291180

[50] Moinuddin K. Qureshi, Vijayalakshmi Srinivasan, and Jude A. Rivers.
2009. Scalable high performance main memory system using phase-
change memory technology. In Proceedings of the 36th annual Interna-
tional Symposium on Computer Architecture (ISCA). ACM, New York,
NY, USA, 24–33.

[51] Drew S Roselli, Jacob R Lorch, Thomas E Anderson, et al. 2000. A
Comparison of File System Workloads.. In Proceedings of 2000 USENIX
Annual Technical Conference. USENIX, Berkeley, CA, 41–54.

[52] Mendel Rosenblum and John K Ousterhout. 1992. The design and
implementation of a log-structured file system. ACM Transactions on
Computer Systems (TOCS) 10, 1 (1992), 26–52.

[53] Stephen M Rumble, Ankita Kejriwal, and John K Ousterhout. 2014.
Log-structured memory for DRAM-based storage.. In FAST, Vol. 14.
1–16.

[54] StephenM Rumble, Diego Ongaro, Ryan Stutsman, Mendel Rosenblum,
and John K Ousterhout. 2011. It’s Time for Low Latency.. In HotOS,
Vol. 13. 11–11.

[55] Yizhou Shan, Shin-Yeh Tsai, and Yiying Zhang. 2017. Distributed
shared persistent memory. In Proceedings of the 2017 Symposium on
Cloud Computing. ACM, 323–337.

[56] Konstantin Shvachko, Hairong Kuang, Sanjay Radia, and Robert
Chansler. 2010. The Hadoop Distributed File System. 2010 IEEE 26th
Symposium on Mass Storage Systems and Technologies (MSST) (2010),
1–10.

[57] Shivaram Venkataraman, Niraj Tolia, Parthasarathy Ranganathan,
Roy H Campbell, et al. 2011. Consistent and Durable Data Struc-
tures for Non-Volatile Byte-Addressable Memory.. In Proceedings of
the 9th USENIX Conference on File and Storage Technologies (FAST).
USENIX, Berkeley, CA, 61–75.

[58] YandongWang, Li Zhang, Jian Tan, Min Li, Yuqing Gao, Xavier Guerin,
Xiaoqiao Meng, and Shicong Meng. 2015. HydraDB: a resilient RDMA-
driven key-value middleware for in-memory cluster computing. In
Proceedings of the International Conference for High Performance Com-
puting, Networking, Storage and Analysis. ACM, 22.

[59] Fei Xia, Dejun Jiang, Jin Xiong, and Ninghui Sun. 2017. Hikv: A hybrid
index key-value store for dram-nvm memory systems. In 2017 USENIX
Annual Technical Conference (USENIX ATC 17). 349–362.

[60] Jian Xu and Steven Swanson. 2016. NOVA: a log-structured file sys-
tem for hybrid volatile/non-volatile main memories. In 14th USENIX
Conference on File and Storage Technologies (FAST 16). 323–338.

[61] Jun Yang, Qingsong Wei, Cheng Chen, Chundong Wang, Khai Leong
Yong, and Bingsheng He. 2015. NV-Tree: Reducing Consistency Cost
for NVM-based Single Level Systems.. In FAST, Vol. 15. 167–181.

[62] Matei Zaharia, Mosharaf Chowdhury, Michael J Franklin, Scott
Shenker, and Ion Stoica. 2010. Spark: Cluster computing with working
sets. HotCloud 10, 10-10 (2010), 95.

[63] Ping Zhou, Bo Zhao, Jun Yang, and Youtao Zhang. 2009. A durable and
energy efficient mainmemory using phase changememory technology.
In Proceedings of the 36th annual International Symposium on Computer
Architecture (ISCA). ACM, New York, NY, USA, 14–23.

[64] Pengfei Zuo, Yu Hua, and Jie Wu. 2018. Write-optimized and High-
performance Hashing Index Scheme for Persistent Memory. In Proceed-
ings of the 12th USENIX Conference on Operating Systems Design and
Implementation (OSDI’18). USENIX Association, Berkeley, CA, USA,
461–476. http://dl.acm.org/citation.cfm?id=3291168.3291202

Session 12A: Storage — Cache is the
answer, what is the question?

ASPLOS’20, March 16–20, 2020, Lausanne, Switzerland

1091

http://dl.acm.org/citation.cfm?id=3291168.3291180
http://dl.acm.org/citation.cfm?id=3291168.3291202

	Abstract
	1 Introduction
	2 Background and Motivation
	2.1 Production Key-Value Store Workloads
	2.2 Small Updates Mismatch with Persistence Granularity
	2.3 Empirical Study on Optane DCPMM
	2.4 Challenges

	3 FlatStore Design
	3.1 Overview of FlatStore
	3.2 Compacted OpLog and Lazy-Persist Allocator
	3.3 Horizontal Batching
	3.4 Log Cleaning
	3.5 Recovery

	4 Implementation
	4.1 FlatStore-H: FlatStore with Hash Table
	4.2 FlatStore-M: FlatStore with Masstree
	4.3 RDMA-based FlatRPC

	5 Evaluation
	5.1 YCSB - Microbenchmark
	5.2 Facebook ETC Pool - Production Workload
	5.3 Multicore Scalability
	5.4 Analysis of Each Optimization
	5.5 Garbage Collection Overhead

	6 Related Works
	7 Conclusion
	8 Acknowledgements
	References

