
Exploring the Asynchrony of Slow Memory Filesystem with EasyIO

Bohong Zhu
zhubohong12@stu.xmu.edu.cn

Xiamen University

Youmin Chen*

chenyoumin@tsinghua.edu.cn
Tsinghua University

Jiwu Shu
shujw@tsinghua.edu.cn

Xiamen University, Minjiang
University & Tsinghua University

Abstract

We introduce EasyIO, a new approach to explore asynchro-
nous I/O on filesystems designed for (disaggregated) non-
volatile memories to improve CPU e�ciency. EasyIO o✏oads
expensive memory movement operations to the on-chip DMA
engine and harvests the unleashed CPU cycles by transpar-
ently interleaving asynchronous I/Os with fine-grained ap-
plication tasks. We further adopt a completion bu↵er-centric
design to improve EasyIO’s e�ciency and schedulability;
internally, orderless file operation and two-level locking are
incorporated to break the serial order between file metadata
and data, thus accelerating read and write operations and de-
fusing deadlock risks. EasyIO also introduces a tra�c-aware
channel manager to fulfill the diverse performance goals
of applications. Extensive experimental results show that,
compared to conventional synchronous filesystems, EasyIO
significantly reduces CPU consumption (using less than 88%
of cores at most) while achieving comparable peak band-
width; EasyIO also achieves 1.03-2.3⇥ speedups across eight
real-world applications. When achieving these goals, EasyIO
exhibits higher but tolerable latencies for read operations due
to the task interleaving.

1 Introduction

With the proliferated demand for real-time data processing
(e.g., data analysis [18, 55], web service [31], and graph pro-
cessing [24, 38, 56]), traditional DDR-based DRAM falls
short due to its limited capacity scalability and high mon-
etary cost. Regarding this, the data center infrastructure is
exploring new system architectures and memory technolo-
gies. Among them, non-volatile memory technologies, such

*Youmin Chen is the corresponding author.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are not
made or distributed for profit or commercial advantage and that copies bear
this notice and the full citation on the first page. Copyrights for components
of this work owned by others than the author(s) must be honored. Abstracting
with credit is permitted. To copy otherwise, or republish, to post on servers or
to redistribute to lists, requires prior specific permission and/or a fee. Request
permissions from permissions@acm.org.
EuroSys ’24, April 22–25, 2024, Athens, Greece
© 2024 Copyright held by the owner/author(s). Publication rights licensed to
ACM.
ACM ISBN 979-8-4007-0437-6/24/04. . . $15.00
https://doi.org/10.1145/3627703.3629586

as those provided by Intel’s Optane DCPMM [13] and Sam-
sung’s memory-semantic SSDs [17], are an appealing build-
ing block for e�cient data storage due to its high density
and low cost; memory disaggregation decouples the com-
pute and memory into resource pools and connects them via
cache-coherent links (e.g., CXL [4]) to enjoy higher resource
utilization and elasticity (independent scaling). Compared to
traditional memories, (disaggregated) non-volatile memories
are typically larger, cheaper, and slower, and thus form a new
layer in the memory hierarchy, which we call slow memory.

A line of recent research work [19, 27, 28, 30, 43, 44,
54, 68, 74, 78] proposes to abstract slow memory with files
due to its familiar programming manner, mature software
ecosystem, and full-fledged permission control. However,
these filesystems provide only the synchronous I/O interface
since memory load/store instructions are inherently syn-
chronous. Besides, a load request that misses in the on-chip
cache and goes to the slow memory often stalls the proces-
sor instruction pipeline for up to hundreds of ns, incurring
heavy CPU consumption [23]. As we will show in § 2.1, a
slow memory-based filesystem can devote up to 95% of CPU
cycles to memory movement operations. This significantly
limits the e�ciency of modern out-of-order (OOO) proces-
sors and thus exacerbates the storage tax problem [50].

This paper presents a fundamentally di↵erent approach to
address this problem by exploring the asynchrony of filesys-
tems for slow memory. Actually, asynchronous I/O has been
extensively used for managing external storage and network
devices (e.g., libaio [16], io_uring [2], SPDK [3], and
DPDK [6]) due to its high CPU utilization – the processor
core issues an I/O command to the device and waits for I/O
completion asynchronously, during which the CPU cycles can
instead be used to run applications. In particular, Intel intro-
duced I/O Acceleration Technology (I/OAT) [12], and more
recently, the Data Streaming Accelerator (DSA) [11], which
can o✏oad memory operations from the CPU to an on-chip
DMA engine. The DMA engine1 is programmed and operated
in the same way as the PCIe-attached devices, enabling us to
access slow memory in an asynchronous manner.

However, memory-level asynchrony does not directly in-
dicate high CPU utilization. Filesystems designed for byte-
addressable slow memory typically face I/Os that are much
finer in size (ranging from a few to tens of KBs), where
an asynchronous I/O can be finished within µs-scale time

1On-chip DMA engine and DMA engine are used interchangeably in the
paper to refer to the o✏oading engine provided by I/OAT or DSA.

624

http://crossmark.crossref.org/dialog/?doi=10.1145%2F3627703.3629586&domain=pdf&date_stamp=2024-04-22

windows. As a result, o✏oading memory operations to the on-
chip DMA engine makes CPU execution highly fragmented.
Such short time windows are hard to be harvested by the op-
erating system since rescheduling a task incurs millisecond-
scale scheduling latencies [31, 60]. An alternative is exposing
such asynchrony to applications and letting the application
interleave asynchronous I/Os with fine-grained computation
tasks, which, however, significantly increases the complexity
of application codes [47] and raises hard scheduling problems
– executing too long tasks makes I/O completion checking
to be delayed, diminishing the low-latency advantage, while
executing too short tasks leaves CPU cycles underutilized.

We introduce schedulable asynchronous I/O, or EasyIO, to
address the above challenge. Motivated by the recent trend
of using light-weight userspace threads (uthreads) to run ap-
plication logic [9, 22, 36, 60, 62, 65, 66, 77], we make the
fragmented execution windows easily harvestable through the
careful coordination between asynchronous I/Os and uthread
scheduling. Specifically, uthreads are multiplexed on physical
cores and scheduled by userspace runtime (i.e., the sched-
uler). Whenever a uthread issues an asynchronous I/O, the
CPU core context switches to run the next runnable uthread,
and switches back when the I/O finishes. In this way, the com-
plexity of interleaving I/O and computation is hidden from the
application to the runtime and the CPU e�ciency is increased
dramatically. While the idea of combining asynchronous I/Os
and uthread scheduling is intuitive, applying EasyIO into a
filesystem raises e�ciency and liveness issues, and we further
incorporate several techniques to address them.

First, for durability and atomicity reasons, EasyIO requires
two interactions with the filesystem to complete an asynchro-
nous I/O, i.e., one for DMA-o✏oaded data copy and the other
for metadata commit. This inevitably incurs high latencies.
Even more problematic, intermediate scheduling between
the two interactions may let a CPU core acquire a file lock
twice, leading to deadlock risks. We adopt a novel use of the
completion bu↵er associated with the DMA engine to allow
data and metadata to be performed simultaneously. Originally,
the DMA engine modifies the completion bu↵er to describe
the completion of a memory copy; we extend its semantics
to describe the completion of write() operations as well.
By placing the completion bu↵er in a predefined persistent
region with its stored value increased monotonically, EasyIO
breaks the serial order between updating file metadata and
data, enabling them to be processed in parallel (§ 4.2). The
completion semantics also guides the design of a two-level
lock to avoid deadlocks. Before the DMA-o✏oaded data copy
completes, EasyIO can release the file lock in advance along
with the metadata commit; to acquire the lock, one first grabs
the file lock and further checks the completion bu↵er to deter-
mine whether a file is safely locked (§ 4.3).

Second, o✏oading memory operations exposes the hard-
ware complexity (e.g., channels, command queues, and reg-
isters as in I/OAT) to the software, which can easily lead
to ine�cient use of the DMA engine. Through an in-depth
analysis of the hardware behavior when o✏oading memory
operations to DMA engines, we derive a number of important
design guidelines – among which some are even counterin-
tuitive. For instance, using multiple DMA channels does not
necessarily lead to higher bandwidth, which instead causes
performance degradation; using fewer DMA channels, how-
ever, incurs serious interference between concurrent requests
due to head-of-line blocking in the command queue and band-
width contention. We introduce a channel manager that care-
fully mediates the interaction between concurrent DMA re-
quests and channels to fulfill the diverse performance goals of
latency-critical (L-apps) and bandwidth-oriented (B-apps)
applications (§ 4.4). Whenever an L-app fails to meet its la-
tency SLOs, the channel manager throttles B-apps by manip-
ulating the related DMA channels at µs-scale time intervals.

EasyIO does not depend on a specific filesystem; in our im-
plementation, we apply EasyIO to NOVA [74], a time-tested
kernel persistent memory filesystem with standard POSIX
APIs and strict data persistence2. We replace its data move-
ment operations in read() and write() and make minor
modifications to the file metadata format and recovery logic
(less than 50 lines of code). To demonstrate the e�ciency of
EasyIO, we conduct extensive tests with both microbench-
marks (FxMark [58]) and real-world applications. Experimen-
tal results show that, compared to conventional synchronous
filesystems, EasyIO significantly reduces CPU consumption.
Specifically, it uses up to 88% fewer CPU cores to achieve
a similar peak write throughput than NOVA. EasyIO deliv-
ers lower average and 99th percentile latencies than NOVA
for write operations, but incurs higher read latencies due
to the interleaving of computation and I/Os. EasyIO also
achieves 1.03-2.3⇥ speedups across eight real-world applica-
tions. EasyIO is novel in the following ways:
• As far as we know, EasyIO makes the first attempt to

explore the asynchrony of slow memories by combining
uthread scheduling and asynchronous I/O, which makes
µs-scale execution windows easily harvestable.

• We further improve EasyIO’s e�ciency and schedulabil-
ity with a completion bu↵er-centric design by introducing
orderless file operation and two-level locking.

• We introduce a channel manager to enable EasyIO to fulfill
di↵erent applications’ diverse performance goals.

2 Motivation and Background

In this section, we briefly introduce the basic concepts of
slow memory storage systems and userspace threads, and
then empirically analyze the overhead of data movement and
the performance of I/OAT.

2Both data and metadata operations ensure durability and atomicity.
2

625

2.1 Slow Memory Storage Systems

Slow memory, such as non-volatile memory (NVM) that is
disaggregated or not, is connected to the processor directly by
either the memory bus or cache-coherent interconnects like
Compute Express Link (CXL) [4]. Slow memory is expected
to be with large capacity (up to TBs), data durability, low mon-
etary cost, and byte-addressability accessed via load/store
instructions of CPU. In this paper, we focus on Intel’s Optane
DCPMM, the first (also the only) commercially available non-
volatile memory product released in 2019, but the techniques
proposed in our paper can be equally applied to other byte-
addressable NVMs such as ReRAM [20], memory-semantic
SSDs [17]), and others.

Compared to DRAM memories, Optane DCPMMs have 2-
3.7⇥ higher latency and 1/3rd bandwidth for loads, while
stores have the same latency but 1/6th bandwidth [42, 44].
With these performance features in mind, many research work
focuses on building scalable and performant filesystems on
top of it [27, 28, 30, 35, 43, 44, 51, 74]. These systems retain
the standard file interfaces but greatly improve the software
e�ciency by removing the page cache to enable direct access
(DAX), adopting lightweight journaling mechanisms [35] and
using fine-grained locks [27].

However, restricted by the blocking nature of load/store
instructions, all existing NVM filesystems only provide syn-
chronous interfaces to applications, incurring high CPU over-
head. We use the FxMark benchmark [58] to generate single-
threaded read and write requests with I/O sizes ranging from
4KB to 64KB, and investigate the latency breakdown of
NOVA [74] when processing these requests (detailed experi-
mental setup will be shown in § 6.1). As shown in Figure 1,
metadata, memcpy, indexing, and syscall & VFS correspond
to the latencies spent on metadata update, file data movement,
file indexing, and OS-level overhead for system calls and
virtual file system, respectively. We find that up to 95% and
63% of CPU cycles are spent on data copy operations for
read() and write(), respectively, as the I/O size grows to
64KB. Moreover, it is even more harmful when cross-socket
data movement on Optane is involved as many recent work
revealed [27, 76]. Similar problem does not happen on SSDs
or HDDs since the device is responsible for data movement
via on-device DMA engine, during which the CPU core can
be scheduled to do other useful work.

2.2 Empirical Study of On-Chip DMA Engine

Many modern processors have included on-chip DMA en-
gines to o✏oad expensive memory movement operations.
Intel introduced I/O Acceleration Technology (I/OAT) to
Xeon 5100 series processor-based platforms as early as in
2006 [12]. I/OAT is actually a set of technologies; among
them, the QuickData Technology enables data copy by an
on-chip DMA engine instead of the CPU. In response to

Metadata Memcpy Indexing Syscall & VFS

La
te

nc
y

(µ
s)

0

5

10

15

20

Write I/O Size (B)
4K 8K 16K 32K 64K

Read I/O Size (B)
4K 8K 16K 32K 64K

Figure 1. Latency breakdown of NOVA [74].

the growing need for hardware o✏oading, Intel recently in-
troduces the Data Streaming Accelerator (DSA) in its 4th
generation Xeon Scalable CPUs (codename Sapphire Rapids).
Studies report that DSA has better e�ciency and lower energy
consumption [11]. Similarly, AMD’s 2nd generation EPYC
CPUs are also equipped with such DMA engines [64].

Workflow. The basic workflow of handling a memory
copy request via the DMA engine goes with the following
steps (takes I/OAT as an example). The CPU core first pre-
pares a DMA descriptor containing the metadata required
for the DMA engine, including the source and the destina-
tion memory addresses and the size that the core intends to
copy. Then, the CPU core inserts the DMA descriptor into a
hardware queue (a contiguous memory bu↵er), and submits it
via memory-mapped I/O (MMIO) registers. Once the DMA
engine finishes the DMA request, it claims the completion by
updating the completion bu↵er (a 64-bit integer) to point to
the latest finished DMA descriptor in the hardware queue.

Both I/OAT and DSA contain multiple channels (or process-
ing engines in DSA) and support batch submission of DMA
requests. However, I/OAT requires that the source and desti-
nation memory bu↵er to be physically contiguous and pinned
before the DMA engine uses them. Instead, DSA supports
shared virtual memory (SVM) that performs address trans-
lation with the on-device address translation cache (ATC);
therefore, DSA allows applications to submit DMA requests
directly with virtual addresses and memory pinning is not
required, substantially lowering the o✏oading overhead.

We use the combination of I/OAT and Optane DCPMM, a
representative (also the only available) hardware setting for us,
to study asynchronous I/Os on slow memory. Su et al. [69] has
already conducted a performance review and derived some
interesting findings (e.g., uneven advantages between reads
and writes over the CPU). However, they mainly focused
on the latency under low concurrency, and we extend the
experiment to explore its performance limits across multiple
channels and cores. Accordingly, we implement a test tool
that can issue read (write) requests from (to) Optane DCPMMs
through the DMA engine or CPU-involved memcpy by tuning
the number of CPU cores, I/O sizes, batch size, and DMA
channels. The experiment is conducted on one NUMA node
with 3 Optane DCPMMs attached.

3

626

memcpy
DMA-16K-B

DMA-4K-NB
DMA-64K-NB

DMA-4K-B
DMA-64K-B

DMA-16K-NB

W
rit

e
B

W
 (G

B
/s

)
R

ea
d

B
W

 (G
B

/s
)

0
5

10
15

0

2

4

6

of Cores
1 2 4 8 16

Figure 2. Bandwidth comparison of memcpy and on-chip
DMA engine. B and NB indicate ‘batch-size = 4’ and ‘no batch’
respectively. One channel used for DMA; I/O sizes larger than 64KB
are not shown since they do not increase bandwidth; for the same
reason, we only show the memcpy bandwidth with the 4KB I/O size.

Figure 2 compares the performance that the DMA engine
and memcpy can achieve when copying data between the
DRAM and the DCPMM as we increase the number of cores,
I/O size, and batch size. Here we only use one DMA chan-
nel for I/OAT (multi-channels will be tested later) and draw
the following basic conclusions. ∂ On-chip DMA engine
achieves higher CPU e�ciency, especially for writes. DMA
can saturate Optane DCPMM’s bandwidth for writes with only
one core, while memcpy requires multiple cores. ∑ On-chip
DMA engine has asymmetric advantages over CPU for reads
and writes. Specifically, DMA fails to reach the peak band-
width for reads (63% lower than memcpy), and it is more CPU-
e�cient than memcpy only when using larger I/O sizes and
fewer cores. ∏ DMA is less e�cient with small I/Os. When
using 4KB I/Os, DMA always underperforms memcpy even
when batching is enabled. π memcpy’s performance declines
for writes as the number of cores increases (reported by many
past work [27, 76]) while the DMA engine does not have
similar problems. Several extra takeaways are highlighted
below, which provide us with important design guidelines.
Multi-channel is not always beneficial. We further evaluate
the performance of the DMA engine by increasing the number
of channels and the results are shown in Figure 3. Here we
use 16 cores to submit I/O requests concurrently to ensure
that DMA channels are saturated. We observe that multi-
channel has a di↵erentiated impact on reads and writes. For
writes, using 4 channels achieves an optimal bandwidth with
a 4KB I/O size, adding more channels, instead, can actually
lead to slight performance degradation; for larger I/O sizes,
the bandwidth decreases monotonically as the number of
channels increases. The performance of read operations never
declines and peaks at 2 - 4 channels with larger I/O sizes.

of Channels (Write) # of Channels (Read)

4KB 16KB 64KB

B
an

dw
id

th
 (G

B
/s

)

0

2

4

6

8

0

2

4

6

1 2 4 6 8 1 2 4 6 8

Figure 3. Bandwidth with a varying number of DMA chan-
nels. 16 cores are used to issue DMA requests concurrently.

On-chip DMA incurs serious latency spikes. Here we let
a foreground program issue 64KB reads with the DMA en-
gine and measure its latency as a background program con-
ducts bulk data movement (2MB) periodically via memcpy
or DMA (to simulate garbage collection). When using the
DMA engine, the foreground and background programs can
either share DMA channels or use separate ones (denoted as
DMA-SH and DMA-EX, respectively). As we can see from Fig-
ure 4, foreground programs exhibit more than a 2⇥ increase
in latency when background instances switch from memcpy
to DMA, and the latency jitters much worse when they share
DMA channels. The main reason is two-fold: first, the DMA
engine consumes device bandwidth disproportionately, lead-
ing to starvation of some DMA channels; second, DMA-SH
further serializes concurrent requests in the same hardware
queue, incurring serious head-of-line blocking.

In conclusion, with the unique hardware features of the
DMA engine in mind, we should devise appropriate strategies
for using it more e�ciently.

2.3 Lightweight Userspace Threads

Operating system is originally designed for slow disks and
Ethernet, and threads (or kernel threads) are typically pre-
emptively multitasked on physical cores and scheduled by
a kernel scheduler at coarse-grained millisecond timescales.
Advances in networking and storage technologies increase the
need for scheduling cores at µs timescales, and lightweight
userspace threads (uthreads) become increasingly popular.
Uthreads are essentially similar to kernel threads – both of
them own separate running states including the stack, CPU
registers, and thread-local global variables. However, uthreads
are implemented entirely in userspace, where context switch-
ing does not require any interaction with the kernel and is thus
extremely e�cient. The uthread itself can perform context
switches with an embedded userspace runtime, which locally
saves the CPU registers of the currently executing uthread and
then loads the registers of the next runnable one. Normally,
uthread is uninterruptible unless it invokes a yield func-
tion actively when blocking on I/Os or locks, which makes
CPU execution be transferred to the next uthread. Preemp-
tive uthread scheduling still requires kernel involvement to

4

627

BG-Memcpy BG-DMA-EX BG-DMA-SH

La
te

nc
y

(µ
s)

GC GC

5

25

125

675

Time (s)
0 1 2 3 4 5 6 7 8 9 10

Figure 4. Interference between foreground and background
programs. Log-scale; EX and SH indicate whether foreground and
background programs use separate or shared DMA channels. GC
indicates the Garbage Collection.

send privileged inter-core signals. Many recent core sched-
uling systems are based on uthreads to achieve high CPU
e�ciency [36, 57, 60–62].

3 Challenges

Our overarching goal is to optimize the CPU e�ciency of
filesystems by exploiting the asynchrony of slow memory.
Specifically, we introduce EasyIO that o✏oads expensive
memory movement operations to the on-chip DMA engine
and harvests the released CPU cycles that will be instead
wasted for busy-polling completions.

In EasyIO, application tasks run inside uthreads, which are
scheduled with a userspace scheduling runtime. Whenever
a uthread issues an asynchronous I/O request to the filesys-
tem, it returns back to the runtime immediately to let the
CPU core run other colocated uthreads. EasyIO allows CPU
cores to always do useful work, and thus increase CPU e�-
ciency. However, combining asynchronous I/O and uthread
scheduling in EasyIO raises e�ciency and liveness issues.
Multiple interactions with the filesystem. To process a
write() operation, the filesystem needs to update data pages
and the related block mappings (which map file pages to their
physical addresses). For example, in NOVA [74] which pro-
vides strict data persistence [44], data pages are written in a
copy-on-write (CoW) manner, then the block mappings are
updated atomically by appending a log entry to commit the
updates made on the data pages. As we can see, metadata
updates and data page updates are strictly ordered into sep-
arate stages; with this, the filesystem determines whether a
write() is finished relying on the completion of metadata
updates. However, EasyIO allows asynchronous write opera-
tions to be returned in advance before the I/O completes, at
which the metadata has not been modified yet. This requires
the runtime to interact with the filesystem again to modify file
metadata. An alternative way is using a background thread
to update metadata when the I/O finishes, which, however, is
contradictory to our design goal of saving CPU cycles.
Uthread scheduling leads to deadlocks. Normally, a file
should be kept locked during the whole operation to pre-
vent others from accessing inconsistent data. In asynchronous
I/O mode, unlocking a file is conducted when committing

…

User
Kernel

DMA engine

Completion buffer

readonly

Filesystem (§ 4.2 – 4.3) Channel
manager (§ 4.4)

v sys_read()

w post DMA request & return

x DMA

y write
completion

x poll completion

Application 1

Sched. runtime (§ 4.1)

uthreads… …

Core 1 Core 2

u read() y uthread switch

Application N

Sched. runtime

uthreads…

Slow memorySlow memory
Slow memory

(e.g., Optane DCPMMs)DRAMDRAMDRAM

Figure 5. Overall architecture of EasyIO. Highlighted steps
show how EasyIO handles a read() syscall asynchronously.

metadata, which appears in a di↵erent stage than locking.
Scheduling between the two stages may let a CPU core ac-
cess the same file again for another uthread, while the file is
still locked by a previous uthread, leading to deadlocks.
DMA bandwidth regulation is hard. As shown in § 2.2,
the on-chip DMA engine shows limited scalability on multi-
channels, while using fewer channels incurs serious cross-app
interferences. However, real-world applications have diverse
performance goals, among them, some are latency-critical
(L-apps) promised with service-level objectives (SLOs), while
others are bandwidth-oriented (B-apps) with relaxed latency
demands but higher bandwidth requirements for bulk data
copies. Therefore, simply colocating these applications can
lead to either SLO violations or device bandwidth under-
utilization. A feasible approach is regulating the bandwidth
consumed by B-apps when L-apps’ performance goals are
unmet. Memory bandwidth regulation has been adopted many
times in past work by assigning CPU quotas [25, 36], instru-
menting software delays [73], or using Intel’s memory band-
width allocation (MBA) [75]. However, all these approaches
are designed for applications that use load/store instruc-
tions to access memory, which is inapplicable for EasyIO
since memory operations are o✏oaded to the DMA engine.

4 EasyIO Design

In this section, we introduce EasyIO and its key design tech-
niques – orderless file operation (§ 4.2) and two-level locking
(§ 4.3) that accelerate read and write operations and eliminate
deadlock problems, and the channel manager (§ 4.4) that
carefully mediates the interaction between DMA requests and
channels to fulfill applications’ diverse performance goals.

4.1 Overview

EasyIO adopts a novel combination of uthread scheduling
and asynchronous I/Os to improve CPU e�ciency. Figure 5
depicts the overall architecture of EasyIO. Applications run

5

628

inside normal processes, which spawn uthreads to execute
application tasks; these uthreads are multiplexed on physical
cores and scheduled by the userspace scheduling runtime.
The slow memory is managed by a filesystem (e.g., NOVA
in the kernel), which provides standard read() and write()
syscalls to applications but with the asynchronous I/O seman-
tics enabled. When an application issues an asynchronous I/O,
the corresponding syscall is intercepted by the scheduling run-
time first (∂ in the figure); this allows the runtime to make
scheduling decisions upon each asynchronous I/O. Then, the
runtime invokes the actual syscall (∑) and the filesystem pro-
cesses it. The filesystem o✏oads memory copy operations
of data pages to the DMA engine and returns back to the
userspace runtime immediately before the DMA request com-
pletes (∏). In the meantime, the DMA engine performs data
copy and updates the completion bu↵er to claim completion
(π∫). Once returning from an asynchronous syscall, the run-
time polls completion from previously posted syscalls (π)
and performs a uthread switch to execute the uthread whose
syscall has been finished (∫).

In this way, asynchronous I/Os and computation tasks from
di↵erent uthreads are interleaved on the same core, while
the complexity of fine-grained scheduling is hidden from
applications to the runtime.

4.2 Orderless File Operation

In a write() operation, metadata updates are strictly ordered
after data page updates (see the upper left of Figure 6), forc-
ing EasyIO to issue multiple syscalls to accomplish an asyn-
chronous I/O. In EasyIO, however, we observe a redundancy
between the completion bu↵er and file metadata – both of
them can describe the completion of writing data pages. With
this extra information, we decouple the strict order between
metadata and data and allow them to be processed in parallel
(lower left of Figure 6).

In the DMA engine, each channel owns a completion bu↵er,
which stores a 64-bit integer to always point to the most re-
cently finished DMA descriptor in the hardware queue (upper
right of Figure 6). In EasyIO, we place these completion
bu↵ers in a persistent region with their starting addresses
recorded in advance. This allows the information stored in
completion bu↵ers to survive across system/power failures.
Meanwhile, when updating the metadata for a write() op-
eration, we also encapsulate the channel ID and the address
of the DMA descriptor for this write in the block mapping
as well (lower right of Figure 6). In this way, the metadata
update can be committed before the DMA request finishes
since the completion of data updates is described indirectly
– we can determine whether a write operation is finished by
comparing the embedded information in the block mapping
with that in the completion bu↵er.

An essential prerequisite for the above mechanism to work
properly lies in that the ADDR in the completion bu↵er should
be increased monotonically. However, the hardware queue

cntOrdered

Orderless

Data I/O MetadataC

Data I/O
Metadata

C
∆t

Hardware
queue

Completion
buffer (64-bit)

file  page ID

Block mapping

PagesPages File pages

CNTADDR

syscall-1 syscall-2

syscall-1

SN

CNT ADDR

Figure 6. The design of orderless file operation. File pages are
read or written asynchronously using the DMA engine; metadata is
updated using memcpy. The letter ’C’ in blue boxes indicates the
completion of DMA.

is essentially a ring bu↵er with a limited size, and the ad-
dress stored in the completion bu↵er must wrap around. To
handle wraparounds, we add an extra 64-bit counter along-
side each completion bu↵er, whose value is added by one for
each wraparound of the hardware queue. Hence, the counter
(CNT) together with the channel ID (ID) and completion bu↵er
(ADDR) form a sequence number (SN, see the right half of Fig-
ure 6), which is monotonically increased whenever a DMA
request completes. Wraparounds of the counter are actually
impossible (every 38 billion years) and are beyond our con-
sideration.

With the above design, we no longer require a strict order
between data and metadata. To process a write() opera-
tion, EasyIO first issues a DMA request for copying file data
from the user bu↵er to slow memory; meanwhile, the file
metadata is updated by embedding the SN related to the de-
scriptor of this DMA request in the block mapping as well.
Once the metadata is durably committed, EasyIO returns back
to userspace for further scheduling. read() operations are
processed similarly, despite that they do not modify block
mappings but only timestamps. To allow EasyIO to check
completion for read and write operations directly in userspace,
we export the completion bu↵ers’ address space to userspace
in a readonly mode.

If the system crashes in the middle of a write operation, we
can determine whether the operation is finished and correctly
recover the file by comparing SNs. First, we check for uncom-
mitted file metadata (e.g., the tail pointer does not point to
the end of the log in NOVA) and discard them accordingly.
For those most recently committed file metadata, we further
compare their SNs in the block mapping with that stored in
the completion bu↵er. A block mapping update is consid-
ered valid only if the SN in the completion bu↵er is equal
to or greater than that in the block mapping; otherwise, the
committed metadata is discarded.

By default, we disable Intel DDIO (Data Direct I/O Tech-
nology3) to ensure that the data is durably written to the
device by the DMA engine. This might be harmful to systems
that heavily rely on DDIO to improve performance (e.g., net-
worked storage systems [26, 46, 52]); On platforms with Intel

3DDIO allows devices to interact directly with the processor cache.
6

629

Meta
Read C

Meta
Write C

Meta
Write C

Meta
Read/Write C

wait

(a) Read-write conflicts (b) Write-write/read conflicts

Figure 7. The design of two-level locking.

eADR [41], the data persistency is guranteed even with DDIO
is enabled, however, due to the out-of-order cache flush prob-
lem, the write performance is significantly diminished [69].
Fortunately, this issue is expected to be addressed in the up-
coming platform where DSA can enable and disable DDIO
on a per-request basis.

4.3 Two-Level Locking

With the orderless file operation design (§ 4.2), EasyIO re-
turns back to the userspace runtime when the metadata update
has been committed but the I/O is unfinished. Unlocking the
file immediately after the metadata update eliminates the risk
of deadlocks (§3), since both locking and unlocking appear
within the same syscall. However, early unlock raises con-
sistency issues since this asynchronous I/O is unfinished yet
and other concurrent operations may access inconsistent data.
Again, we rely on the completion bu↵er to allow EasyIO to
safely unlock files in advance and thus introduce the two-level
locking mechanism.

When a read() or write() begins, it grabs the file lock
as usual (level-1 lock) and releases the lock after metadata
updates are committed. Due to the early release of the lock,
we need to further regulate potential conflicts (level-2 lock);
we treat read-write conflicts and write-write/read conflicts
di↵erently. read() operation does not modify block map-
ping and file data, so later writes on the same file can start
immediately once the read() releases the lock, despite that
its data I/O has not been finished (see Figure 7a). Besides,
we require write() operations to use CoW to update file
data, where old data pages are never modified in place; in this
way, previously unfinished reads are guaranteed to not read
dirty data. For a write-read/write conflict where an earlier
write() has released the lock but its data copy is unfinished,
the current read or write operation must block until it actually
completes; otherwise, it might access inconsistent or obsolete
data (see Figure 7b). Similar to the recovery logic in § 4.2,
EasyIO determines whether a previous write() is completed
by comparing the SN within the completion bu↵er with that
of the most recently updated block mapping of this file. The
way to find the most recently updated block mapping varies
depending on how a filesystem is implemented: in NOVA,
the newest updates appear at the tail of the metadata log; in
extent-based filesystems (e.g., Ext4 [8]), we can store SN in
the reserved field of the inode structure.

4.4 Channel Manager

We introduce the channel manager to meet applications’ di-
verse performance goals. First, the channel manager provides
quality-of-service guarantees for L-apps while maintaining
high device bandwidth utilization for B-apps. Second, the
channel manager enables selective o✏oading to maximize the
device bandwidth while reducing CPU consumption.
Quality-of-service. The channel manager provides quality-
of-service guarantees for L-apps by separating and throttling
B-apps’ bandwidth consumption. Recall that sharing DMA
channels can lead to severe head-of-line blocking in the hard-
ware queue (§2.2), we first assign L- and B-apps with sep-
arate DMA channels. Specifically, all B-apps share a single
DMA channel, while L-apps steer DMA requests to up to
4 channels to balance the performance of writes and reads
according to our empirical study.

We throttle B-apps’ bandwidth consumption by manipu-
lating the channel command register (CHANCMD) of I/OAT,
which can suspend and resume a channel flexibly at a low
cost (74 ns). By controlling the working time of a DMA
channel, we can control its bandwidth consumption within a
threshold of any value. For instance, given a target bandwidth
threshold, the channel manager monitors the total amount
of data copied by this channel within a period of time (i.e.,
epoch); if it reaches its limit for this epoch, the channel is
suspended until the next epoch. To avoid an L-app’s SLO
from being violated, we must suspend and resume B-apps’
DMA channel at a fine-grained timescale (e.g., µs-scale) to
prevent B-apps from occupying the device bandwidth for too
long. However, we observe that when a DMA channel is sus-
pended, the currently running DMA request is either executed
to completion or restarted upon resumption, depending on
how far the request has been processed. In the latter case,
frequently suspending channels can cause the same I/O to be
executed repeatedly if the I/O itself is large. We address this
issue by splitting bulk I/Os of B-apps into small-sized ones
(e.g., 64KB) before posting them to the DMA channel.

EasyIO employs an approach similar to Caladan [36] to
guarantee L-apps’ quality-of-service (see Listing 1). In each
epoch, EasyIO monitors whenever an L-app’s SLO (e.g.,
latency) is met. If an SLO violation happens, the channel
manager throttles B-apps by decreasing its bandwidth thresh-
old; otherwise, the bandwidth threshold is increased instead.

1 while true:
2 min = MAX;
3 // Step-1: monitor L-apps' SLO
4 for L in L-apps:
5 tmp = (L.target - L.latency) / L.target;
6 min = (min < tmp) ? min : tmp;
7 // Step-2: conduct throttling decisions
8 if min < 0:
9 // Throttle down B-apps

10 B_APP_BW_LIMIT -= Delta;
11 else if min > threshold:
7

630

12 // Throttle up B-apps
13 B_APP_BW_LIMIT += Delta;
14 sleep(epoch);

Listing 1. Bandwidth regulation in pseudo-code. Delta is a
hyper-parameter concluded from experiments

Selective o✏oading. Based on our empirical study in § 2.2,
we o✏oad memory copy operations to the DMA engine selec-
tively due to its uneven performance advantages over memcpy
across I/O types and I/O sizes. For I/O sizes smaller than
4KB, we choose to use memcpy directly and the reason is
two-fold: first, the DMA engine is less e�cient with small
I/Os even with batch submission enabled; second, the time it
takes to complete a small-sized I/O is very short (less than 1
µs), where the DMA request completion can happen simul-
taneously or even earlier than the CPU core returns back to
userspace, leaving no CPU cycles to be harvested.

For read operations, the DMA engine saves CPU cycles
but achieves much lower performance than memcpy. Hence,
EasyIO uses both the DMA engine and memcpy for read
operations, and adopts a simple admission control policy
to balance I/Os dynamically between them (see Listing 2).
Specifically, we allow a CPU core to issue read requests to the
DMA engine only if its size is greater than 4KB and there is
a DMA channel with a queue depth of less than 2; otherwise,
CPU-involved memcpy is used for reading data. In this way,
We make full use of the asynchronous nature of the DMA
engine to save CPU resources when the read concurrency is
low; under high concurrency, extra read requests are shunted
to memcpy to realize higher total read bandwidth.

1 if req.size > 4K:
2 for C in DMA-Channels:
3 if C.q_deps < 2:
4 C.enqueue(req);
5 return;
6 // memcpy if size <= 4KB or no available channels
7 memcpy(req.des, req.src, req.size);

Listing 2. Read admission control in pseudo-code.

5 Implementation

Applying EasyIO to existing filesystems. The techniques
introduced by EasyIO is orthogonal to how a filesystem for-
mats data, and only require small modifications being made
in data movements, concurrency control and recovery. Take
NOVA [74] for an example. NOVA is a highly e�cient and
scalable persistent memory filesystem that organizes file meta-
data with a log structure and updates data pages using CoW.
We modify NOVA in the following aspects to work with
EasyIO (involving less than 50 lines of code changes). First,
we modify the read and write code path to interact with the
channel manager for data movements. When a file range is
discontiguous on physical memory, NOVA issues multiple
memcpys for each range; in EasyIO, we generate one DMA
request per range and batch submit them to the DMA engine.

We also add an extra SN field in the log entry (a basic file meta-
data structure) to record the corresponding DMA descriptor
in the write code path. Second, we modify the locking logic
of NOVA to use the two-level locking mechanism. Third, we
supplement the recovery logic to discard those committed but
invalid metadata by comparing SNs.
Userspace thread scheduling. Caladan [36] is a famous core
scheduling framework that can balance load across cores
within an application by stealing uthreads from busy cores,
and reallocate cores between applications in reaction to load
changes. We modify Caladan [36] to perfectly interact with
asynchronous I/Os by adding two new functionalities: (i) the
runtime needs to intercept synchronous syscall such as read
and write; (ii) the runtime needs to poll for the completion
of former issued DMAs and make context switch decisions
based on this to guarantee correctness. In detail, we make the
following modifications: First, the runtime intercepts filesys-
tem syscalls transparently via the LD_PRELOAD environment
variable. Second, as mentioned in Section 4, EasyIO exposes
completion bu↵ers to userspace in read-only mode. Therefore,
the runtime can easily poll the completion by scanning these
bu↵ers to detect any memory changes. Originally, Caladan
performs context switch in three conditions: a. when a uthread
voluntarily releases the core (i.e., thread_yield()); b. when a
uthread exits actively (i.e., thread_exit()); c. when the system
is under imbalance load (i.e., work stealing). Slightly di↵erent
in EasyIO, we perform the thread_yield() every time when re-
turning from the kernel after sending an asynchronous I/O to
transfer the execution of the core to the runtime. At this point,
the runtime polls the completion directly, and right after that,
the runtime performs context switch if necessary. By polling
for completion directly, EasyIO avoids waste of CPU for ded-
icated polling threads. When doing context switch, EasyIO
chooses the next runnable uthread if the completion of the
uthread’s previously issued syscall arrives or the uthread is
at the head of the work queue. For uthreads whose I/Os have
already been finished but are not resumed due to the current
core is occupied by a long-term task, Caladan schedules other
idle cores to steal them for execution. To guarantee correct-
ness, EasyIO ensures that a uthread will not be switched to
execution with former issued DMAs unfinished.
Compatibility with DSA. The recently introduced DSA is
expected to deliver higher performance than I/OAT [48]. In
this part, we discuss EasyIO’s compatibility with DSA and
how EasyIO can be easily ported to use DSA. Di↵erent from
I/OAT’s abstraction of channels, DSA consists of a set of con-
figurable interfaces for communication with the host; among
them, work queues (WQs) hold submitted work descriptors
from the software, and processing engines (PEs) fetch descrip-
tors from WQs and process them. Group is a basic unit for
DSA (similar to I/OAT’s channel), which can be configured
with an arbitrary number of WQs and PEs, and an arbiter
enforces fairness control between these PEs and WQs.

8

631

The completion bu↵er-centric design in EasyIO (§ 4.2 and
4.3) can be equally supported by DSA since it also uses com-
pletion bu↵ers to record the completion of DMA requests.
For bandwidth regulation, DSA provides similar features that
can be used by EasyIO to disable and enable WQs dynam-
ically using the command register. We can also further im-
prove EasyIO leveraging DSA’s arbiter. Currently, L-apps
in EasyIO share a limited number of DMA channels, which
incurs head-of-line blocking in the hardware queue when the
number of L-apps increases. With DSA, we can create a WQ
for each L-app and assign these WQs with di↵erent priorities
using the arbiter, which adjusts the frequency at which de-
scriptors are dispatched from WQs to PEs, and thus enables
priority-based I/O scheduling. DSA is also expected to pro-
vide better performance for small IOs and read operations,
enabling EasyIO to divert more I/O tra�c to the DMA engine
to free more CPU cycles. We leave this as our future work.

6 Evaluation

In our evaluation, we try to answer the following questions:
• Does EasyIO achieve the goal of reducing CPU resource

consumption when compared with conventional synchro-
nous filesystems?

• How does each individual technique in EasyIO help with
achieving the above goals?

• How does EasyIO perform under real-world applications?

6.1 Experimental Setup

Testbed. Our experimental testbed is equipped with 2⇥ Intel
Xeon Gold 6240M CPUs (36 physical cores) and 192 GB
DDR4 DRAM. Each CPU has 8 I/OAT channels, and the
server is installed with 6 Intel Optane DCPMMs (256GB per
DIMM, 1.5 TB in total) to work as slow memory. Unless
otherwise stated, we perform all experiments on all Optane
DCPMMs residing on both NUMA sides, whose read band-
width peaks at 37.6 GB/s and the write bandwidth peaks at
13.2 GB/s. The server is installed with Ubuntu 18.04 and
the kernel version is Linux 5.1, the newest kernel version
supported by NOVA.
Compared filesystems. We evaluate EasyIO against three
representative PM-aware filesystems and all of them provide
synchronous interfaces. Among these filesystems, NOVA [74]
can only use the PM spaces from one NUMA node, and we
extend it to support using PM spaces from all NUMA nodes.
Fastmove [69] is a PM filesystem that extensively uses DMA
to accelerate file operations. However, it fails to run our bench-
mark and applications, so we implement a similar version
named NOVA-DMA by replacing the memcpys in the read
and write code path with DMA-o✏oaded ones. Odinfs [76] is
a NUMA-aware scalable filesystem that adopts a delegation
mechanism for data movement, where background threads
access PM on behalf of the application to automatically paral-
lelize the accesses across NUMA nodes. The open-sourced

NOVA
EasyIO

NOVA-DMA
EasyIO-CPU

ODINFS

W
rit

e
La

t.
(µ

s)
R

ea
d

La
t.

(µ
s)

0
5

10
15

0
5

10
15

IO Size (B)
4K 8K 16K 32K 64K

Figure 8. Latency comparison of write and read operations
with varying IO sizes. EasyIO-CPU indicates the time the CPU
spent performing the operation in EasyIO.

Odinfs runs on Linux 5.13 so we switch to this version for
testing. By default, Odinfs reserves 12 physical cores per
NUMA node to run background threads, and we keep the
same configuration for evaluation.

6.2 Overall Performance

We use FxMark [58] to measure the overall performance of
EasyIO against the compared filesystems in terms of both la-
tency and throughput. FxMark provides 19 micro-benchmarks
with tunable parameters to change data types, access modes,
operation types, and sharing levels. In this paper, we focus on
the read() and write() operations.
End-to-end latency with a single thread. Figure 8 shows
the latency of write and read operations across all evaluated
filesystems using 1 working thread. In EasyIO, we only run
one uthread on a physical core and we let it busy-poll the
DMA completion after returning from the kernel. We make
the following three observations.

First, EasyIO achieves the lowest latency for both write
and read operations. For example, the read latency of EasyIO
is 22.49% lower than that of NOVA on average, while the
write latency is 22.43% lower. For read operations, the latency
reduction mainly comes from the benefits of DMA o✏oading;
due to the same reason, NOVA-DMA also shows similar laten-
cies as that of EasyIO. For write operations, EasyIO allows
the metadata and data to be performed in parallel (i.e., order-
less file operation), which further shortens the operation exe-
cution time; hence, EasyIO is even faster than NOVA-DMA.
Odinfs also shows better latency than NOVA, especially for
large I/Os, since it splits large I/Os into small ones and allows
them to be performed in parallel by background threads.

Second, the latency reduction of EasyIO is more significant
for large I/Os. Specifically, EasyIO exhibits up to 41% lower
write latency than NOVA with the 64KB I/O size, while their
latencies are almost similar for small I/Os. The reason is two-
fold: ¨ the latency for writing a small I/O is dominated by
the metadata parts (indexing, updating, and committing), so

9

632

Av
g.

 L
at

. (
µs

)

N ND O E
Cores

at Peak 16 10 14 6

P
99

 L
at

. (
µs

)

Write Thru. (16KB)

NOVA NOVA-DMA ODINFS EasyIO

0

50

100

150

200
0

25

50

75

100

0 300k 600k 900k

N ND O E
Cores

at Peak 18 8 12 16

Read Thru. (16KB)

10

20

30

0

20

40

60

0 1M 2M

N ND O E
Cores

at Peak 16 4 12 2

Write Thru. (64KB)

0

100

200

300

400

0

100

200

300

400

50k 100k 150k 200k

N ND O E
Cores

at Peak 18 8 10 16

Read Thru. (64KB)

0

50

100

150

200

250
0

50

100

150

0 200k 400k 600k

Figure 9. Throughput vs. latency by increasing the number of cores. Tables embedded in the figure shows the minimum number of cores
required to achieve a peak throughput. Letters N, ND, O, and E in tables indicate NOVA, NOVA-DMA, Odinfs and EasyIO, respectively.

the benefits of o✏oading data I/O are limited; and ≠ EasyIO
directly uses memcpy for 4KB I/Os.

Third, the time spent by the CPU performing the operation
in EasyIO only occupies a small fraction (37% and 5% at
64KB) for both read and write operations. This indicates that
nearly 63% and 95% of CPU time can be harvested from
write and read operations respectively to run application tasks.
Instead, NOVA, NOVA-DMA, and Odinfs require the involve-
ment of the CPU all the time to accomplish file operations
due to their synchronous interfaces.
Throughput vs. latency. We measure the throughput achieved
by all evaluated filesystems and the associated average and
99th percentile (P99) latencies as we increase the number
of working threads. Here we use FxMark’s DWAL and DRBL
workloads, which allow multiple working threads to write
(read) to (from) their private files. For EasyIO, FxMark runs
inside Caladan and each uthread runs a worker (the number of
created uthreads is two times of physical cores). The top half
of Figure 9 shows the average latency and the bottom half
shows the P99 latency as the throughput increases. The tables
embedded in Figure 9 show the minimum number of cores
required for each filesystem to achieve a peak throughput. We
make the following three observations:

First, EasyIO uses much fewer cores to achieve a peak
throughput for write operations. For example, EasyIO re-
quires 6 cores to peak in write throughput with 16KB I/Os;
with larger I/Os (e.g., 64KBs), EasyIO only uses 2 cores.
Compared to NOVA, EasyIO saves 63% and 88% CPU cores,
respectively, to achieve similar performance. With EasyIO’s
asynchronous I/O interfaces, uthreads in Caladan do not need
to block for I/O completions, instead, they are scheduled to

run other uthreads, allowing more asynchronous I/O to be
issued, and thus save most CPU resources. EasyIO also saves
CPU resources for read operations but the benefit is rather lim-
ited. This is because the DMA engine only provides a limited
bandwidth for read operations, forcing a large part of the read
tra�c to be moved by memcpy in EasyIO. In this way, only
a small fraction of CPU cycles are harvested. Still, EasyIO
achieves an 11% reduction in CPU consumption than NOVA.
We also notice that the read throughput of NOVA-DMA and
Odinfs peaks at fewer cores than EasyIO, but their achieved
peak throughput is much lower than that of EasyIO. NOVA-
DMA solely uses DMA to copy data and its peak throughput
is only less than half of what EasyIO achieves. Odinfs needs
to reserve many cores to run background threads, so we can
only use up to 12 cores to run worker threads of FxMark with
Odinfs, which is not enough to realize a peak throughput.

Second, EasyIO achieves lower write latency but higher
read latency than the compared filesystems. For write opera-
tions, EasyIO can restrict its average latency below 16µs and
19µs, respectively, for the 16KB and 64KB I/O sizes as the
throughput peaks, and the corresponding P99 latency is as
low as 28µs and 36µs; this is 41% and 71% lower than that
of NOVA on average. The main reason lies in that EasyIO
requires only several cores (2 - 6 cores) to achieve a peak
write throughput, where the head-of-line blocking in the hard-
ware queue and the device-level bandwidth contention are not
significant. For the same reason, NOVA-DMA also achieves
better write latency. EasyIO exhibits higher read latency; for
example, given a target throughput running at 2Mops with
the 16KB I/O size, EasyIO’s average and P99 latencies are

10

633

90% and 114% higher than that of NOVA. As mentioned be-
fore, EasyIO uses both asynchronous DMA and synchronous
memcpy to process read tra�c; when they are interleaved
together, asynchronous I/Os will be further delayed by syn-
chronous I/Os since the running core will continue executing
the same uthread when the synchronous I/O finishes.

Third, EasyIO achieves the highest peak write throughput
among the compared filesystems (13% higher than NOVA
on average) and its throughput only declines slightly as we
further increase the number of working threads. The write
throughput of both NOVA and NOVA-DMA decreases sharply
under higher concurrency but with di↵erent reasons behind
it. Optane DCPMM has poor write scalability [27, 76] and is
responsible for NOVA’s performance decline. NOVA-DMA
uses all available DMA channels, and our empirical study
in §2.2 shows that using more channels is harmful to perfor-
mance scalability. Instead, EasyIO uses fewer channels, so its
write throughput only drops slightly.

6.3 Real-World Applications

In this section, we evaluate how EasyIO performs with the
following eigth real-world applications, and Table 1 shows
the read size, write size and read/write ratio of them.
• Snappy [39] is a compression/decompression library. We

let working (u)threads read compressed data from pre-built
files, decompress it, and write it into new files.

• JPGDecoder[14] reads pictures from files, decodes them
into RGB888 format, and writes them into new files.

• AES is a cryptographic algorithm contained in Crypto [5].
We let working (u)threads encrypt files using AES into
ciphertext and write them to new files.

• Grep [10] is a commonly used utility for searching plain-
text data sets for lines that match a regular expression. We
let each worker (u)thread read data from a separate file into
a bu↵er and do string matching for each line in that bu↵er.

• KNN [15] (k-nearest neighbors) relies on the k-d tree, a
binary tree whose tree node is a k-dimensional vertex, to
make classifications or predictions of an individual data
point. We let working (u)threads read sample data from
files and search for each sample in a pre-built k-d tree.

Application Avg. Read Size Avg. Write Size R/W Ratio
Snappy 910KB 1.9MB 1:1

JPGDecoder 343KB 6.3MB 1:1
AES 64KB 64KB 1:1
Grep 2MB 0KB 1:0
KNN 1MB 0KB 1:0
BFS 1MB 0KB 1:0

Fileserver 1MB 1040KB 1:2
Webserver 256K 16KB 10:1

Table 1. Configuration of real-world applications.

Th
ro

ug
hp

ut
 (o

ps
/s

)

of Cores

NOVA NOVA-DMA ODINFS EasyIO
(a) Snappy

(c) AES

(e) KNN

(g) Fileserver

0

100k

200k

0

10k

20k

30k
0

200

400

600

800
0

1k

2k

3k

0 4 8 12 16

0

20

40

60

of Cores

(b) JPGDecoder

(d) Grep

(f) BFS

(h) Webserver

0

100k

200k

300k

0

2k

4k

6k

8k
0

1k

2k

0 4 8 12 16

Figure 10. Throughput of real-world applications.

• BFS [1] (Breadth First Search) reads serialized graph data
from files, builds the graph in memory, and runs the breadth-
first search from a given vertex.

• Fileserver is a workload from Filebench [7], it performs
create, write, read, stat, delete operations on a set of files.

• Webserver is a workload from Filebench, it performs a
large number of read operations on a set of files and then
appends to a single log file.
As shown in Figure 10, for I/O intensive or I/O-computation

balanced applications, such as Snappy, Grep, KNN, and BFS,
EasyIO achieves 2.1⇥, 2.1⇥, 1.5⇥, and 2.3⇥ higher through-
put than NOVA, respectively, as we increase the number of
worker threads. EasyIO enables asynchronous I/Os and al-
lows computation to be interleaved with I/Os, thus using
CPU more e�ciently given the same number of cores. In
other synchronous filesystems, the CPU cores are fully in-
volved in both I/Os and computation, so they deliver much
lower throughput than EasyIO. JPGDecoder and AES are
both computation-dominated, where decoding and encrypting
data occupy most CPU cycles. Due to this reason, EasyIO
only achieves slightly higher throughput than other synchro-
nous filesystems. NOVA-DMA also uses DMA for data copy,
but it only exposes synchronous interfaces to applications,
leaving no CPU cycles to be harvested. For Fileserver, EasyIO
shows 2.3⇥, 1.6⇥ and 1.1⇥ higher throughput than NOVA,

11

634

W
rit

e
La

t.
(µ

s)

0

100

200

300

400

EasyIO Naive EasyIO Naive

Th
ro

ug
hp

ut
 (K

op
s/

s)

0

4

8

12

I/O Size (B)
4K 8K 16K 32K 64K

of Cores
2 4 6 8

Figure 11. E↵ectiveness of orderless file operation and two-
level locking. The left half shows the write latency with di↵erent
I/O sizes; the right half shows the throughput with lock conflicts.

NOVA-DMA and Odinfs respectively. NOVA achieves the
lowest throughput because, for a write operation, NOVA uses
one core to write data to DCPMM with memcpy, which is
less e�cient than DMA and multiple cores delegation as in
Odinfs. Under high contention(i.e., Webserver in Figure 10(h),
however, EasyIO shows limited opportunity to harvest CPU
resources e�ciently, therefore achieves lower throughput than
Odinfs. Odinfs’s throughput starts to decline beyond 12 cores
since we only have 12 cores left due to the reservation of
cores for background threads; for this reason, we only do
experiments within 16 cores.

6.4 E↵ects of Individual Techniques

In this section, we measure the e↵ectiveness of each indi-
vidual technique. In order to highlight the e↵ectiveness of
the Orderless File Operation and the Two-Level Locking, we
implement a naive version of EasyIO (namely Naive), which
processes read and write operations with the data and meta-
data updating strictly ordered into separate syscalls.

6.4.1 E↵ects of orderless file operation. The left part of
Figure 11 presents the latency of EasyIO and Naive for write
operations with di↵erent I/O sizes. We observe that the latency
of EasyIO is 18% lower than that of Naive on average. This
is because EasyIO allows data and metadata to be updated in
parallel with fewer syscalls (Orderless File Operation). More-
over, the latency improvements over Naive become much
more obvious as the I/O size grows. The reason is that for
smaller I/Os, updating metadata becomes dominant compared
to data copy in DMA, which diminishes the e↵ect of process-
ing data and metadata in parallel.

6.4.2 E↵ects of two-level locking. Then we measure the
throughput achieved by EasyIO and Naive with high con-
tention on file locks to demonstrate the e↵ects of two-level
locking. To avoid deadlocks of Naive, we disable work steal-
ing in Caladan and create two di↵erent uthreads on each
physical core, and let one uthread run the FxMark DWOM work-
load, which writes to a shared file, and the other performs
scientific computation that never issues I/Os.

DMA-Throttling No-Throttling CPU-Throttling

La
te

nc
y

(µ
s) GC GC

10

15

20

25

Time (s)
0 1 2 3 4 5 6 7 8 9 10

Figure 12. E↵ectiveness of bandwidth throttling. We colocate
a Web server (64KB I/O size) with a garbage collector (issues 2MB
bulk I/O periodically), and report the latency of the Web server.

As shown in the right part of Figure 11, both EasyIO and
Naive deliver less throughput as the number of cores increases.
The reason lies in that more cores incur higher lock contention
overhead (i.e. more writers race for the same lock). Even so,
EasyIO achieves a throughput that is 66% higher than Naive
does with 2 cores. This is because Naive holds the lock all
the time for a write operation, and intermediate scheduling
within a write operation further prolongs the critical section,
making later writes to be delayed. The two-level locking
in EasyIO allows the write lock to be released in advance
without delaying other conflicting operations.

6.4.3 E↵ects of bandwidth throttling. To evaluate the ef-
fectiveness of the channel manager, we colocate two applica-
tions, where a foreground application is a Web server (L-app),
which reads HTML files in response to client requests; the
background application is a garbage collector (B-app) that
conducts bulk data movement (2MB) periodically. The client
requests of the Web server follow a Poisson arrival distribu-
tion. As shown in Figure 12, we implement No-Throttling
and CPU-Throttling for comparison. In No-Throttling, colo-
cated applications run with EasyIO without throttling their
bandwidth. In CPU-Throttling, EasyIO throttles the band-
width consumed by the garbage collector by assigning it with
fewer CPU cycles using the policy of Caladan. In both CPU-
Throttling and DMA-Throttling, we regulate the bandwidth
consumed by the garbage collector to be below 2GB/s (1/3rd
of the hardware bandwidth).

In both CPU-Throttling and No-Throttling, the latency of
Web server spikes immediately as GC starts, and the maxi-
mum latency increases up to 20µs, which is 2.5⇥ higher than
that when the GC instance is idle. On the contrary, DMA-
Throttling presents better control over the latency of the Web
server – its maximum latency is merely 13.7µs, which is 40%
lower than that in CPU-Throttling and No-Throttling. CPU-
Throttling fails to regulate bandwidth since EasyIO does not
rely on load/store to move data. Hence, even if the garbage
collector is assigned with fewer CPU cycles, it still can oc-
cupy the memory bandwidth using the DMA engine.

6.5 Crash Consistency with CrashMonkey

12

635

Workloads Description Total
Crash Points

Total
Passed

create_delete create, write, remove
on regular files 1000 1000

generic_056 create, write, link
on regular files 1000 1000

generic_090 write, append, link
on regular files 1000 1000

generic_322 create, write, rename
on regular files 1000 1000

Table 2. Crash consistency test results with CrashMonkey.

To evaluate if EasyIO recovers correctly when power fail-
ures happen, we use a black-box testing tool, CrashMon-
key [59]. CrashMonkey automatically generates workloads
and checks both data and metadata to determine the correct-
ness of recovery. We choose 4 workloads which contain the
write() operations to accurately test the consistency of EasyIO
and performs 1000 tests for each workload. These workloads
cover several error-prone syscalls including create(), write(),
delete() and rename() etc. Table 2 shows the results. EasyIO
guarantees crash consistency for the following reasons: (i)
by recording SN in block mappings and incorporating with
CoW, EasyIO can restore the filesystem to a consistent state
by discarding block mappings (the log in NOVA) with unfin-
ished DMAs; (ii) with two-level locking, EasyIO preserve
the concurrency consistency; (iii) the runtime guarantees that
a uthread will not be switched to execute with unfinished
DMAs. Therefore, EasyIO passes all tests.
6.6 Summary

From the experimental results, we conclude that EasyIO
shows limited benefit under three scenarios: first, under high
contention workloads (e.g., Webserver in Figure 10(h)), EasyIO
is less e�ciency because the CPU is wasted on file lock; sec-
ond, for I/O size smaller than 4KB, EasyIO is less e�ciency
because the I/OAT copies data slower than CPU; third, for
read operations, EasyIO introduces higher latencies because
I/OAT is less e�cient in read. However, as mentioned before,
DSA delivers higher performance than I/OAT, and we expect
that DSA can further expand EasyIO’s benefit.

7 Related Work

DMA-accelerated storage systems. Many recent work used
the on-chip DMA to accelerate data movement operations
in storage systems [21, 69] and network processing [37, 71].
Among them, Assise[21] uses I/OAT for cross-socket log evic-
tion to NVMs; Fastmove extensively uses the on-chip DMA
engine for accelerating read() and write() operations in a
persistent memory filesystem. All above systems use I/OAT
based on the fact that the on-chip DMA achieves better single-
core performance than CPU-involved memcpy. However, our
paper shows that, under high concurrency setups, I/OAT fails

to provide higher peak bandwidth; instead, the core advan-
tage of I/OAT lies in that it can release CPU resources for
data movements. Therefore EasyIO adopts a fundamentally
di↵erent approach (i.e., asynchronous IO), to harvest the oth-
erwise wasted CPU cycles in data movements. Several studies
also use I/OAT for improving CPU e�ciency, including pro-
viding asynchronous memory copy interfaces [29, 70], or
reducing CPU costs for background data migration tasks [63];
we share a similar goal as them but provide a more systematic
approach for achieving high CPU utilization and transparency
by introducing EasyIO.
Slow memory filesystems. A line of research work focuses
on providing file abstraction to manage slow memory. Among
them, single node filesystems are placed either in the ker-
nel [30, 35, 43, 74], or in userspace [34, 49, 72], or in both [27,
44]; most of these systems focus on reducing the software
overhead with diverse approaches to fully free up hardware
bandwidth. In a distributed environment where memory de-
vices are connected via the high-speed network (e.g., RDMA
and CXL), recent work also propose to use files to manage the
distributed shared memory space [19, 54, 68, 78] due to its
familiar programming manner, mature software ecosystem,
and full-fledged permission control. However, all the above
filesystems provide synchronous interfaces; EasyIO is di↵er-
ent from them by providing asynchronous I/Os to applications
and thus achieves higher CPU utilization.
Asynchronous I/O. This is the opposite concept of synchro-
nous IO; when an asynchronous I/O is issued, the caller
does not immediately get the result, and the completion
event is returned back via shared status, notifications, or call-
backs. Asynchronous I/O is being extensively used to man-
age external storage and network devices. For example, in
libaio [16], I/O request is submitted via io_submit() and
completion information is acquired using io_getevents();
similar interfaces also appear in SPDK [3], DPDK [6], and
RDMA verbs. With the asynchronous I/O interfaces, the CPU
core can interleave application logic with I/Os to improve
CPU e�ciency. As far as we know, EasyIO is the first to
exploit the asynchrony of slow memory storage systems.
Userspace core scheduling. In response to the ‘killer mi-
crosecond’ problem when processing microsecond-scale re-
quests, existing systems improve CPU utilization by adopting
user space core scheduling. Among them, Shenango [60]
and Arachne [62] run applications inside uthreads and reallo-
cates cores across applications at fine-grained time intervals;
Caladan [36] steps further by introducing flexible and e�-
cient policies to balance loads across cores and applications
in response to load spikes. Another line of studies balance
load across cores via work stealing [61], separating short and
long tasks [32, 33], and fine-grained core preemption [45].
Some recent work also o✏oads the scheduler to SmartNICs
to mitigate the CPU overhead [40, 53, 67]. These systems mo-
tivate us to use uthreads in EasyIO to improve CPU e�ciency
without compromising the software transparency.

13

636

8 Conclusion

We introduced EasyIO to enable asynchronous I/Os on filesys-
tems designed for slow memories; with this, EasyIO mit-
igates the storage tax by harvesting the otherwise wasted
CPU cycles to run applications with a novel combination of
memory-level asynchronous I/O and userspace core schedul-
ing. EasyIO does not provide higher peak performance than
existing filesystems; instead, we aim at using fewer cores to
achieve the same peak bandwidth. Currently, EasyIO is more
performant for write() operations (saving up to 88% CPU
resources) due to I/OAT’s unbalanced performance between
reads and writes; we believe that the benefits of EasyIO can
be further extended with faster DMA engines (e.g., DSA).

9 Acknowledgements

We thank our shepherd Pramod Bhatotia and anonymous
reviewers for their feedback and suggestions. This work is
supported by the National Key R&D Program of China (Grant
No. 2022YFB4500302), National Natural Science Founda-
tion of China (Grant No. U22B2023, 62202255) and Huawei
(TC20220808044). Youmin Chen is also supported by the Na-
tional Postdoctoral Program for Innovative Talents (Grant No.
BX2021154) and the China Postdoctoral Science Foundation
(Grant No. 2021M701887).

References

[1] 2010. Breadth First Search or BFS for a Graph. https://www.geeksfor
geeks.org/breadth-first-search-or-bfs-for-a-graph/.

[2] 2019. E�cient IO with io_uring. https://kernel.dk/io_uring.pdf.
[3] 2023. Building ultra high-performance storage applications with the

storage performance development kit. https://spdk.io/.
[4] 2023. Compute Express Link: The Breakthrough CPU-to-Device Inter-

connect CXL. https://www.computeexpresslink.org/.
[5] 2023. Crypto. https://github.com/openssl/openssl.
[6] 2023. Data Plane Development Kit. https://www.dpdk.org/.
[7] 2023. Filebench. https://github.com/filebench/filebench/.
[8] 2023. Fourth extended filesystem (ext4). https://www.kernel.org/doc

/html/v4.19/filesystems/ext4/index.html.
[9] 2023. The Go Programming Language. https://golang.org/.

[10] 2023. Grep. https://github.com/PatricZhao/ParallelGrep.
[11] 2023. Intel Data Streaming Accelerator Architecture Specification.

https://cdrdv2-public.intel.com/759709/353216-data-streaming-ac
celerator-user-guide-2.pdf.

[12] 2023. Intel I/O Acceleration Technology. https://www.intel.com/cont
ent/www/us/en/wireless-network/accel-technology.html.

[13] 2023. Intel Optane Memory - Responsive Memory, Accelerated Perfor-
mance. https://www.intel.com/content/www/us/en/products/details
/memory-storage/optane-memory.html.

[14] 2023. JPGDecoder. https://github.com/fzyzwrj/TinyJPEGDecoder.
[15] 2023. Kdtree. https://github.com/jtsiomb/kdtree.
[16] 2023. Linux AIO. https://pypi.org/project/libaio/.
[17] 2023. Memory-Semantic SSD. https://samsungmsl.com/ms-ssd/.
[18] Lior Abraham, John Allen, Oleksandr Barykin, Vinayak Borkar,

Bhuwan Chopra, Ciprian Gerea, Daniel Merl, Josh Metzler, David
Reiss, Subbu Subramanian, Janet L. Wiener, and Okay Zed. 2013.
Scuba: Diving into Data at Facebook. 6, 11 (aug 2013), 1057–1067.
https://doi.org/10.14778/2536222.2536231

[19] Marcos K. Aguilera, Nadav Amit, Irina Calciu, Xavier Deguillard,
Jayneel Gandhi, Stanko Novakovic, Arun Ramanathan, Pratap Sub-
rahmanyam, Lalith Suresh, Kiran Tati, Rajesh Venkatasubramanian,
and Michael Wei. 2018. Remote Regions: A Simple Abstraction for
Remote Memory. In Proceedings of the 2018 USENIX Conference on
Usenix Annual Technical Conference (Boston, MA, USA) (USENIX
ATC ’18). USENIX Association, USA, 775–787.

[20] Hiroyuki Akinaga and Hisashi Shima. 2010. Resistive random access
memory (ReRAM) based on metal oxides. Proc. IEEE 98, 12 (2010),
2237–2251.

[21] Thomas E. Anderson, Marco Canini, Jongyul Kim, Dejan Kostić,
Youngjin Kwon, Simon Peter, Waleed Reda, Henry N. Schuh, and
Emmett Witchel. 2020. Assise: Performance and Availability via Client-
local NVM in a Distributed File System. In 14th USENIX Symposium
on Operating Systems Design and Implementation (OSDI 20). USENIX
Association, 1011–1027. https://www.usenix.org/conference/osdi
20/presentation/anderson

[22] Saman Barghi. [n. d.]. uThreads: Concurrent User Threads in C++(and
C). https://github.com/samanbarghi/uThreads.

[23] R. Bera, K. Kanellopoulos, S. Balachandran, D. Novo, A. Olgun, M.
Sadrosadat, and O. Mutlu. 2022. Hermes: Accelerating Long-Latency
Load Requests via Perceptron-Based O↵-Chip Load Prediction. In
2022 55th IEEE/ACM International Symposium on Microarchitecture
(MICRO). IEEE Computer Society, Los Alamitos, CA, USA, 1–18.
https://doi.org/10.1109/MICRO56248.2022.00015

[24] Rong Chen, Jiaxin Shi, Yanzhe Chen, Binyu Zang, Haibing Guan, and
Haibo Chen. 2019. PowerLyra: Di↵erentiated Graph Computation and
Partitioning on Skewed Graphs. ACM Trans. Parallel Comput. 5, 3,
Article 13 (jan 2019), 39 pages. https://doi.org/10.1145/3298989

[25] Shuang Chen, Christina Delimitrou, and José F. Martínez. 2019.
PARTIES: QoS-Aware Resource Partitioning for Multiple Interac-
tive Services. In Proceedings of the Twenty-Fourth International Con-
ference on Architectural Support for Programming Languages and
Operating Systems (Providence, RI, USA) (ASPLOS ’19). Associa-
tion for Computing Machinery, New York, NY, USA, 107–120.
https://doi.org/10.1145/3297858.3304005

[26] Youmin Chen, Youyou Lu, Fan Yang, Qing Wang, Yang Wang, and Jiwu
Shu. 2020. FlatStore: An E�cient Log-Structured Key-Value Storage
Engine for Persistent Memory. In Proceedings of the Twenty-Fifth
International Conference on Architectural Support for Programming
Languages and Operating Systems (Lausanne, Switzerland) (ASPLOS
’20). Association for Computing Machinery, New York, NY, USA,
1077–1091. https://doi.org/10.1145/3373376.3378515

[27] Youmin Chen, Youyou Lu, Bohong Zhu, Andrea C. Arpaci-Dusseau,
Remzi H. Arpaci-Dusseau, and Jiwu Shu. 2021. Scalable Persistent
Memory File System with Kernel-Userspace Collaboration. In 19th
USENIX Conference on File and Storage Technologies (FAST 21).
USENIX Association, 81–95. https://www.usenix.org/conferenc
e/fast21/presentation/chen-youmin

[28] Youmin Chen, Jiwu Shu, Jiaxin Ou, and Youyou Lu. 2018. HiNFS:
A Persistent Memory File System with Both Bu↵ering and Direct-
Access. ACM Trans. Storage 14, 1, Article 4 (apr 2018), 30 pages.
https://doi.org/10.1145/3204454

[29] Zhenke Chen, Dingding Li, Zhiwen Wang, Hai Liu, and Yong Tang.
2021. RAMCI: a novel asynchronous memory copying mechanism
based on I/OAT. CCF Transactions on High Performance Computing 3
(2021), 129–143.

[30] Jeremy Condit, Edmund B. Nightingale, Christopher Frost, Engin
Ipek, Benjamin Lee, Doug Burger, and Derrick Coetzee. 2009. Bet-
ter I/O through Byte-Addressable, Persistent Memory. In Proceed-
ings of the ACM SIGOPS 22nd Symposium on Operating Systems
Principles (Big Sky, Montana, USA) (SOSP ’09). Association for
Computing Machinery, New York, NY, USA, 133–146. https:
//doi.org/10.1145/1629575.1629589

14

637

[31] Je↵rey Dean and Luiz André Barroso. 2013. The Tail at Scale. Commun.
ACM 56, 2 (feb 2013), 74–80. https://doi.org/10.1145/2408776.
2408794

[32] Henri Maxime Demoulin, Joshua Fried, Isaac Pedisich, Marios Kogias,
Boon Thau Loo, Linh Thi Xuan Phan, and Irene Zhang. 2021. When
Idling is Ideal: Optimizing Tail-Latency for Heavy-Tailed Datacenter
Workloads with PerséPhone. In Proceedings of the ACM SIGOPS 28th
Symposium on Operating Systems Principles (Virtual Event, Germany)
(SOSP ’21). Association for Computing Machinery, New York, NY,
USA, 621–637. https://doi.org/10.1145/3477132.3483571

[33] Diego Didona and Willy Zwaenepoel. 2019. Size-aware Sharding
For Improving Tail Latencies in In-memory Key-value Stores. In 16th
USENIX Symposium on Networked Systems Design and Implementation
(NSDI 19). USENIX Association, Boston, MA, 79–94. https://www.
usenix.org/conference/nsdi19/presentation/didona

[34] Mingkai Dong, Heng Bu, Jifei Yi, Benchao Dong, and Haibo Chen.
2019. Performance and Protection in the ZoFS User-Space NVM File
System. In Proceedings of the 27th ACM Symposium on Operating
Systems Principles (Huntsville, Ontario, Canada) (SOSP ’19). Asso-
ciation for Computing Machinery, New York, NY, USA, 478–493.
https://doi.org/10.1145/3341301.3359637

[35] Subramanya R. Dulloor, Sanjay Kumar, Anil Keshavamurthy, Philip
Lantz, Dheeraj Reddy, Rajesh Sankaran, and Je↵ Jackson. 2014. System
Software for Persistent Memory. In Proceedings of the Ninth European
Conference on Computer Systems (Amsterdam, The Netherlands) (Eu-
roSys ’14). Association for Computing Machinery, New York, NY, USA,
Article 15, 15 pages. https://doi.org/10.1145/2592798.2592814

[36] Joshua Fried, Zhenyuan Ruan, Amy Ousterhout, and Adam Belay. 2020.
Caladan: Mitigating Interference at Microsecond Timescales. In 14th
USENIX Symposium on Operating Systems Design and Implementation
(OSDI 20). USENIX Association, 281–297. https://www.usenix.org
/conference/osdi20/presentation/fried

[37] Brice Goglin. 2008. Improving message passing over Ethernet with
I/OAT copy o✏oad in Open-MX. In 2008 IEEE International Confer-
ence on Cluster Computing. 223–231. https://doi.org/10.1109/CLUS
TR.2008.4663775

[38] Joseph E. Gonzalez, Yucheng Low, Haijie Gu, Danny Bickson, and
Carlos Guestrin. 2012. PowerGraph: Distributed Graph-Parallel Com-
putation on Natural Graphs. In Proceedings of the 10th USENIX Con-
ference on Operating Systems Design and Implementation (Hollywood,
CA, USA) (OSDI’12). USENIX Association, USA, 17–30.

[39] Google. 2023. Snappy, a fast compressor/decompressor. https://github
.com/google/snappy.

[40] Jack Tigar Humphries, Kostis Ka↵es, David Mazières, and Christos
Kozyrakis. 2019. Mind the gap: A case for informed request scheduling
at the nic. In Proceedings of the 18th ACM Workshop on Hot Topics in
Networks. 60–68.

[41] Intel. [n. d.]. What Is ADR? https://www.intel.com/content/ww
w/us/en/developer/articles/technical/eadr-new-opportunities-for-
persistent-memory-applications.html.

[42] Joseph Izraelevitz, Jian Yang, Lu Zhang, Juno Kim, Xiao Liu, Amir-
saman Memaripour, Yun Joon Soh, Zixuan Wang, Yi Xu, Subramanya R
Dulloor, et al. 2019. Basic performance measurements of the Intel Op-
tane DC persistent memory module. arXiv preprint arXiv:1903.05714
(2019).

[43] Rohan Kadekodi, Saurabh Kadekodi, Soujanya Ponnapalli, Harshad
Shirwadkar, Gregory R. Ganger, Aasheesh Kolli, and Vijay Chi-
dambaram. 2021. WineFS: A Hugepage-Aware File System for Persis-
tent Memory That Ages Gracefully. In Proceedings of the ACM SIGOPS
28th Symposium on Operating Systems Principles (Virtual Event, Ger-
many) (SOSP ’21). Association for Computing Machinery, New York,
NY, USA, 804–818. https://doi.org/10.1145/3477132.3483567

[44] Rohan Kadekodi, Se Kwon Lee, Sanidhya Kashyap, Taesoo Kim,
Aasheesh Kolli, and Vijay Chidambaram. 2019. SplitFS: Reducing

Software Overhead in File Systems for Persistent Memory. In Pro-
ceedings of the 27th ACM Symposium on Operating Systems Prin-
ciples (Huntsville, Ontario, Canada) (SOSP ’19). Association for
Computing Machinery, New York, NY, USA, 494–508. https:
//doi.org/10.1145/3341301.3359631

[45] Kostis Ka↵es, Timothy Chong, Jack Tigar Humphries, Adam Belay,
David Mazières, and Christos Kozyrakis. 2019. Shinjuku: Preemptive
Scheduling for second-scale Tail Latency. In 16th USENIX Symposium
on Networked Systems Design and Implementation (NSDI 19). USENIX
Association, Boston, MA, 345–360. https://www.usenix.org/confere
nce/nsdi19/presentation/kaffes

[46] Anuj Kalia, Michael Kaminsky, and David Andersen. 2019. Datacen-
ter RPCs can be General and Fast. In 16th USENIX Symposium on
Networked Systems Design and Implementation (NSDI 19). USENIX
Association, Boston, MA, 1–16. https://www.usenix.org/conferenc
e/nsdi19/presentation/kalia

[47] Anuj Kalia, Michael Kaminsky, and David G. Andersen. 2016. FaSST:
Fast, Scalable and Simple Distributed Transactions with Two-Sided
(RDMA) Datagram RPCs. In 12th USENIX Symposium on Operating
Systems Design and Implementation (OSDI 16). USENIX Association,
Savannah, GA, 185–201. https://www.usenix.org/conference/osdi
16/technical-sessions/presentation/kalia

[48] Reese Kuper, Ipoom Jeong, Yifan Yuan, Jiayu Hu, Ren Wang, Narayan
Ranganathan, and Nam Sung Kim. 2023. A Quantitative Analysis
and Guideline of Data Streaming Accelerator in Intel 4th Gen Xeon
Scalable Processors. arXiv preprint arXiv:2305.02480 (2023).

[49] Youngjin Kwon, Henrique Fingler, Tyler Hunt, Simon Peter, Emmett
Witchel, and Thomas Anderson. 2017. Strata: A Cross Media File
System. In Proceedings of the 26th Symposium on Operating Systems
Principles (Shanghai, China) (SOSP ’17). Association for Computing
Machinery, New York, NY, USA, 460–477. https://doi.org/10.1145/
3132747.3132770

[50] Huaicheng Li, Mingzhe Hao, Stanko Novakovic, Vaibhav Gogte, Sriram
Govindan, Dan R. K. Ports, Irene Zhang, Ricardo Bianchini, Haryadi S.
Gunawi, and Anirudh Badam. 2020. LeapIO: E�cient and Portable Vir-
tual NVMe Storage on ARM SoCs. In Proceedings of the Twenty-Fifth
International Conference on Architectural Support for Programming
Languages and Operating Systems (Lausanne, Switzerland) (ASPLOS
’20). Association for Computing Machinery, New York, NY, USA,
591–605. https://doi.org/10.1145/3373376.3378531

[51] Siyang Li, Youyou Lu, Jiwu Shu, Yang Hu, and Tao Li. 2017. LocoFS:
A Loosely-Coupled Metadata Service for Distributed File Systems. In
Proceedings of the International Conference for High Performance
Computing, Networking, Storage and Analysis (Denver, Colorado) (SC
’17). Association for Computing Machinery, New York, NY, USA,
Article 4, 12 pages. https://doi.org/10.1145/3126908.3126928

[52] Hyeontaek Lim, Dongsu Han, David G. Andersen, and Michael Kamin-
sky. 2014. MICA: A Holistic Approach to Fast In-Memory Key-
Value Storage. In 11th USENIX Symposium on Networked Systems
Design and Implementation (NSDI 14). USENIX Association, Seattle,
WA, 429–444. https://www.usenix.org/conference/nsdi14/technical-
sessions/presentation/lim

[53] Jiaxin Lin, Adney Cardoza, Tarannum Khan, Yeonju Ro, Brent E.
Stephens, Hassan Wassel, and Aditya Akella. 2023. RingLeader:
E�ciently O✏oading Intra-Server Orchestration to NICs. In 20th
USENIX Symposium on Networked Systems Design and Implemen-
tation (NSDI 23). USENIX Association, Boston, MA, 1293–1308.
https://www.usenix.org/conference/nsdi23/presentation/lin

[54] Youyou Lu, Jiwu Shu, Youmin Chen, and Tao Li. 2017. Octopus: an
RDMA-enabled Distributed Persistent Memory File System. In 2017
USENIX Annual Technical Conference (USENIX ATC 17). USENIX
Association, Santa Clara, CA, 773–785. https://www.usenix.org/con
ference/atc17/technical-sessions/presentation/lu

15

638

[55] Luo Mai, Kai Zeng, Rahul Potharaju, Le Xu, Steve Suh, Shivaram
Venkataraman, Paolo Costa, Terry Kim, Saravanan Muthukrishnan,
Vamsi Kuppa, Sudheer Dhulipalla, and Sriram Rao. 2018. Chi: A
Scalable and Programmable Control Plane for Distributed Stream Pro-
cessing Systems. Proc. VLDB Endow. 11, 10 (jun 2018), 1303–1316.
https://doi.org/10.14778/3231751.3231765

[56] Grzegorz Malewicz, Matthew H. Austern, Aart J.C Bik, James C.
Dehnert, Ilan Horn, Naty Leiser, and Grzegorz Czajkowski. 2010.
Pregel: A System for Large-Scale Graph Processing. In Proceedings
of the 2010 ACM SIGMOD International Conference on Manage-
ment of Data (Indianapolis, Indiana, USA) (SIGMOD ’10). Associ-
ation for Computing Machinery, New York, NY, USA, 135–146.
https://doi.org/10.1145/1807167.1807184

[57] Sarah McClure, Amy Ousterhout, Scott Shenker, and Sylvia Ratnasamy.
2022. E�cient Scheduling Policies for Microsecond-Scale Tasks. In
19th USENIX Symposium on Networked Systems Design and Imple-
mentation (NSDI 22). USENIX Association, Renton, WA, 1–18.
https://www.usenix.org/conference/nsdi22/presentation/mcclure

[58] Changwoo Min, Sanidhya Kashyap, Ste↵en Maass, and Taesoo Kim.
2016. Understanding Manycore Scalability of File Systems. In 2016
USENIX Annual Technical Conference (USENIX ATC 16). USENIX
Association, Denver, CO, 71–85. https://www.usenix.org/conferenc
e/atc16/technical-sessions/presentation/min

[59] Jayashree Mohan, Ashlie Martinez, Soujanya Ponnapalli, Pandian Raju,
and Vijay Chidambaram. 2018. Finding Crash-Consistency Bugs with
Bounded Black-Box Crash Testing. In 13th USENIX Symposium on
Operating Systems Design and Implementation (OSDI 2018). USENIX
Association, Carlsbad, CA.

[60] Amy Ousterhout, Joshua Fried, Jonathan Behrens, Adam Belay, and
Hari Balakrishnan. 2019. Shenango: Achieving High CPU E�ciency
for Latency-sensitive Datacenter Workloads. In 16th USENIX Sympo-
sium on Networked Systems Design and Implementation (NSDI 19).
USENIX Association, Boston, MA, 361–378. https://www.usenix.o
rg/conference/nsdi19/presentation/ousterhout

[61] George Prekas, Marios Kogias, and Edouard Bugnion. 2017. ZygOS:
Achieving Low Tail Latency for Microsecond-Scale Networked Tasks.
In Proceedings of the 26th Symposium on Operating Systems Principles
(Shanghai, China) (SOSP ’17). Association for Computing Machinery,
New York, NY, USA, 325–341. https://doi.org/10.1145/3132747.
3132780

[62] Henry Qin, Qian Li, Jacqueline Speiser, Peter Kraft, and John Ouster-
hout. 2018. Arachne: Core-Aware Thread Management. In 13th
USENIX Symposium on Operating Systems Design and Implemen-
tation (OSDI 18). USENIX Association, Carlsbad, CA, 145–160.
https://www.usenix.org/conference/osdi18/presentation/qin

[63] Amanda Raybuck, Tim Stamler, Wei Zhang, Mattan Erez, and Simon
Peter. 2021. HeMem: Scalable Tiered Memory Management for Big
Data Applications and Real NVM. In Proceedings of the ACM SIGOPS
28th Symposium on Operating Systems Principles (Virtual Event, Ger-
many) (SOSP ’21). Association for Computing Machinery, New York,
NY, USA, 392–407. https://doi.org/10.1145/3477132.3483550

[64] Mohan Rokkam and Shyam Iyer. [n. d.]. Accelerating Intra-Host Data
Movement with VMware PVRDMA on a Dell AMD PowerEdge Server.

https://infohub.delltechnologies.com/p/accelerating-intra-host-
data-movement-with-vmware-pvrdma-on-a-dell-amd-poweredge-
server/.

[65] Zhenyuan Ruan, Seo Jin Park, Marcos K. Aguilera, Adam Belay, and
Malte Schwarzkopf. 2023. Nu: Achieving Microsecond-Scale Resource
Fungibility with Logical Processes. In 20th USENIX Symposium on
Networked Systems Design and Implementation (NSDI 23). USENIX
Association, Boston, MA, 1409–1427. https://www.usenix.org/confe
rence/nsdi23/presentation/ruan

[66] Zhenyuan Ruan, Malte Schwarzkopf, Marcos K. Aguilera, and Adam
Belay. 2020. AIFM: High-Performance, Application-Integrated Far

Memory. In 14th USENIX Symposium on Operating Systems Design
and Implementation (OSDI 20). USENIX Association, 315–332.
https://www.usenix.org/conference/osdi20/presentation/ruan

[67] Hamed Seyedroudbari, Srikar Vanavasam, and Alexandros Daglis. 2023.
Turbo: SmartNIC-enabled Dynamic Load Balancing of µs-scale RPCs.
In 2023 IEEE International Symposium on High-Performance Com-
puter Architecture (HPCA). 1045–1058. https://doi.org/10.1109/HP
CA56546.2023.10071135

[68] Yizhou Shan, Shin-Yeh Tsai, and Yiying Zhang. 2017. Distributed
Shared Persistent Memory. In Proceedings of the 2017 Symposium on
Cloud Computing (Santa Clara, California) (SoCC ’17). Association
for Computing Machinery, New York, NY, USA, 323–337. https:
//doi.org/10.1145/3127479.3128610

[69] Jingbo Su, Jiahao Li, Luofan Chen, Cheng Li, Kai Zhang, Liang Yang,
and Yinlong Xu. 2023. Revitalizing the Forgotten On-Chip DMA to
Expedite Data Movement in NVM-based Storage Systems. In 21st
USENIX Conference on File and Storage Technologies (FAST 23).
USENIX Association, Santa Clara, CA, 363–378. https://www.usen
ix.org/conference/fast23/presentation/su

[70] K. Vaidyanathan, W. Huang, L. Chai, and D. K. Panda. 2007. Designing
E�cient Asynchronous Memory Operations Using Hardware Copy
Engine: A Case Study with I/OAT. In 2007 IEEE International Parallel
and Distributed Processing Symposium. 1–8. https://doi.org/10.1109/
IPDPS.2007.370479

[71] Karthikeyan Vaidyanathan and Dhabaleswar K. Panda. 2007. Benefits
of I/O Acceleration Technology (I/OAT) in Clusters. In 2007 IEEE
International Symposium on Performance Analysis of Systems Software.
220–229. https://doi.org/10.1109/ISPASS.2007.363752

[72] Haris Volos, Sanketh Nalli, Sankarlingam Panneerselvam,
Venkatanathan Varadarajan, Prashant Saxena, and Michael M.
Swift. 2014. Aerie: Flexible File-System Interfaces to Storage-Class
Memory. In Proceedings of the Ninth European Conference on
Computer Systems (Amsterdam, The Netherlands) (EuroSys ’14).
Association for Computing Machinery, New York, NY, USA, Article
14, 14 pages. https://doi.org/10.1145/2592798.2592810

[73] Kan Wu, Kaiwei Tu, Yuvraj Patel, Rathijit Sen, Kwanghyun Park,
Andrea Arpaci-Dusseau, and Remzi Arpaci-Dusseau. 2022. NyxCache:
Flexible and E�cient Multi-tenant Persistent Memory Caching. In
20th USENIX Conference on File and Storage Technologies (FAST 22).
USENIX Association, Santa Clara, CA, 1–16. https://www.usenix.o
rg/conference/fast22/presentation/wu

[74] Jian Xu and Steven Swanson. 2016. NOVA: A Log-structured File Sys-
tem for Hybrid Volatile/Non-volatile Main Memories. In 14th USENIX
Conference on File and Storage Technologies (FAST 16). USENIX
Association, Santa Clara, CA, 323–338. https://www.usenix.org/con
ference/fast16/technical-sessions/presentation/xu

[75] Jifei Yi, Benchao Dong, Mingkai Dong, Ruizhe Tong, and Haibo Chen.
2022. MT 2: Memory Bandwidth Regulation on Hybrid NVM/DRAM
Platforms. In 20th USENIX Conference on File and Storage Technolo-
gies (FAST 22). USENIX Association, Santa Clara, CA, 199–216.
https://www.usenix.org/conference/fast22/presentation/yi-mt2

[76] Diyu Zhou, Yuchen Qian, Vishal Gupta, Zhifei Yang, Changwoo Min,
and Sanidhya Kashyap. 2022. ODINFS: Scaling PM Performance with
Opportunistic Delegation. In 16th USENIX Symposium on Operating
Systems Design and Implementation (OSDI 22). USENIX Association,
Carlsbad, CA, 179–193. https://www.usenix.org/conference/osdi22/
presentation/zhou-diyu

[77] Yang Zhou, Hassan M. G. Wassel, Sihang Liu, Jiaqi Gao, James Mick-
ens, Minlan Yu, Chris Kennelly, Paul Turner, David E. Culler, Henry M.
Levy, and Amin Vahdat. 2022. Carbink: Fault-Tolerant Far Memory.
In 16th USENIX Symposium on Operating Systems Design and Imple-
mentation (OSDI 22). USENIX Association, Carlsbad, CA, 55–71.
https://www.usenix.org/conference/osdi22/presentation/zhou-yang

16

639

[78] Bohong Zhu, Youmin Chen, Qing Wang, Youyou Lu, and Jiwu Shu.
2021. Octopus+: An RDMA-Enabled Distributed Persistent Memory

File System. ACM Trans. Storage 17, 3, Article 19 (aug 2021), 25 pages.
https://doi.org/10.1145/3448418

17

640

