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Abstract

The growing complexity of LLM usage today, e.g., multi-round

conversation and retrieval-augmented generation (RAG), makes

contextual states (i.e., KV cache) reusable across user requests.

Given the capacity constraints of GPU memory, only a limited

number of contexts can be cached on GPU for reusing. Ex-

isting inference systems typically evict part of the KV cache

and restore it by recomputing it from the original tokens or

offloading it to host storage for later retrieval, both of which

introduce substantial computational or I/O overheads.

We propose HCache, a novel LLM state restoration method.

Its key idea is to restore LLM states from intermediate ac-

tivations and thus utilize computational and I/O resources

with low overhead. We enhance HCache with two techniques,

including i) a bubble-free restoration scheduler that integrates

resource-complementary methods to optimize the balance

between computation and IO tasks; and ii) a chunk-based

storage manager to address the layout mismatch issue (i.e.,

layer-before-token saving versus token-before-layer restora-

tion). Our evaluations, conducted using real-world tasks, show

that HCache reduces the TTFT by up to 1.93× compared to

KV offload while consuming 1.92-2.40× less storage space;

compared to token recomputation, HCache achieves up to

5.73× reduction in TTFT.

CCS Concepts: • Information systems → Storage manage-

ment.
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1 Introduction

Large Language Models (LLMs) [25, 40, 47, 49] have demon-

strated substantial potential across a wide array of applications,
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Figure 1. State Restoration Method Comparison. Recomputa-

tion: compute KV cache from history tokens when reused; KV cache

offload: save KV cache at host storage and fetch them to GPU memory

when reused; HCache saves 6× computational and 2× IO resources.

such as content generation [11, 66], code comprehension [13,

35], and the development of intelligent agents [51, 53]. LLMs

commonly serve user queries in two phases, including a prefill

phase to process a user’s prompt and a generation phase that

sequentially generates new tokens autoregressively. During

both phases, intermediate states (a.k.a., KV cache) are gener-

ated and cached for each token to avoid their recomputation.

Many existing LLM serving systems are stateless among

user requests; the KV cache is discarded once the request is

finished. Some recent techniques aim at optimizing individ-

ual requests, such as request batching [61], GPU memory

management [28], and request scheduling [3, 22, 52], among

others. However, the increasing complexity of LLM usage

today makes user requests depend on historical contexts. For

example, in multi-round conversational chatbots, the historical

dialogue, including a user’s prompts and the LLM’s outputs,

is accumulated as contextual states to enhance the LLM’s un-

derstanding of the conversation background. In typical LLM

chatbots such as Claude [6], the length of history dialogues

can reach 200K [38]. There are also long-context applications,

such as Retrieval-Augmented Generation (RAG). RAG ap-

plications search domain-specific knowledge related to user

requests and use it to help LLMs generate more accurate

answers and alleviate the hallucination problem [24, 48]. We

call these applications as stateful LLMs.

Yet, stateful LLMs raise new challenges for managing the

states of their historical contexts. When serving new user

requests, simply prefilling the prompt with historical contexts

(i.e., token recomputation) will significantly increase comput-

ing overhead, potentially causing response time to multiply

by tens of times. Recent work proposes directly reusing the

KV cache among user requests [20, 60, 67]. Nevertheless, our

analysis of two popular LLM traces, i.e., ShareGPT4 [1] and

L-Eval [5], shows that a single A100-40GB GPU can keep up

to 7-20 multi-round conversations or 1-3 long contexts. As a

result, large-volume KV caches of historical contexts must be

offloaded to host storage (i.e., KV offload [2, 19, 62]), which
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again introduces high latencies when loading KV caches from

host storage to GPU memory.

We observe that both token recomputation and KV offload

adhere to the standard LLM inference process, maintaining the

LLM forward pass or KV cache as is to manage and restore

historical contextual states. Consequently, these approaches

occupy the extreme ends of the design spectrum, solely uti-

lizing GPU computational or I/O capabilities, thus leaving

system resources underutilized. In this paper, we introduce

HCache, a novel LLM state restoration method to break this

conventional wisdom by using GPU computational and IO

resources simultaneously in a low overhead manner compared

with existing methods (see Figure 1).

At the core of HCache is to exploit LLM’s intrinsic struc-

ture characteristic – regaining the KV cache by computing it

from rather smaller intermediate activations – for fast state

restoration. Fortunately, the hidden states between adjacent

LLM layers have such good properties and can be used as

an alternative to the KV cache. Specifically, the hidden states

are half the size of the KV cache, thus reducing the IO trans-

mission time by 2× compared to KV offload. Furthermore,

recomputing KV cache from hidden states instead of original

tokens eliminates two computationally intensive modules in

LLM, including the quadratic complexity attention mecha-

nism and the feed-forward network (FFN); hence, HCache

reduces the computation cost by at least 6×.

Restoring the contextual states with HCache involves two

parts – transmitting the hidden states to GPU memory and

recomputing it into KV cache via common GEMM operations.

By applying pipeline techniques, the above two steps can be

performed concurrently to utilize both the IO and computa-

tional resources, further reducing state restoration time. As

a whole, HCache significantly reduces the computation and

IO overhead and is faster than existing approaches on main-

stream platforms. However, fully leveraging the capabilities

of HCache presents two technical challenges and we design

techniques tailored to each issue.

First, state restoration with HCache involves both recom-

putation and IO transmission, whose completion times are not

always the same under varying hardware setups, producing

pipeline bubbles. The actual restoration speed is bounded

by the slower one of the two steps. To address this problem,

we introduce the bubble-free restoration scheduler, which

incorporates a resource-complementary restoration method to

eliminate pipeline bubbles. Second, hidden states are gener-

ated and saved autoregressively in a layer-before-token order,

but are fetched as a whole batch in a token-before-layer order

in restoration. This incurs mismatched storage visiting orders

in saving and restoration, presenting a hard design trade-off

in the storage format to manage hidden states effectively. A

storage format optimized for one stage inevitably results in

small and random IOs for the other stage. In HCache, we

introduce a chunk-based storage format tailored for fast state

restoration since reducing state restoration time is our primary
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Figure 2. Transformer Architecture.

design goal. To mitigate the performance impact on the gener-

ation phase, we use a two-stage saving strategy to store newly

generated hidden states.

We implement HCache by integrating it into an LLM

serving system and evaluating it with varying models and

real-world LLM traces. Evaluation results show that HCache

reduces the TTFT (Time To First Token) by up to 1.93× against

KV offload, adding less than 4% overhead on TBT (Time

Between Token). Compared to token recomputation, HCache

reduces TTFT by up to 5.73×. We also evaluated HCache on

platforms with various computing and transmission speeds.

With different hardware configurations, HCache improves

the restoration speed by 1.33-2.66× against KV offload.

In summary, we make the following contributions:

• We propose HCache, a novel method to restore historical

LLM states utilizing intermediate activations.

• We introduce the bubble-free restoration scheduler and

chunk-based storage management to enhance HCache.

• We evaluate HCache on various hardware setups and show

that it outperforms the state-of-the-art solutions such as

AttentionStore [19] and DeepSpeed-MII [15].

2 Background and Motivation

2.1 Transformer Architecture

In this section, we first provide the background on the trans-

former architecture (§2.1) and LLM serving systems (§2.2).

Then, we show the examples, characteristics, and overhead of

stateful LLM applications in §2.3 and §2.4.

Most LLMs today adopt the transformer architecture as their

building block. As shown in Figure 2, LLM has N repetitive

transformer layers, each comprising two major components:

the attention module and the FFN (feed-forward network).

An LLM forward pass is conducted with a batch of to-

kens. At the start of each layer, each token has a high-

dimension representation, we call it the hidden states. The

first layer’s hidden states come from the embedding table. The

hidden states in other layers are the output of the previous

transformer layer. The attention module projects each token’s

hidden states to three different tensors: K, Q, and V. The
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model then uses the muti-head-attention (MHA) [50] to inter-

act information between tokens. Every token first computes

its attention score by getting the softmaxed inner product

of their & with the  of other tokens. Next, the token com-

putes the weighted average of + of other tokens using their

corresponding attention score. The weighted average is then

multiplied by the out projection to get the final attention result.

The attention module in one layer can be summarized by the

following equations:

&8!,  
8
!,+

8
! =,

@,:,E
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∗ � 8!
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FFN module consists of two linear projections with an

activation function in between. The output of the FFN module

(i.e., hidden states) is the input of the next transformer layer.

� 8!+1 = FC2 (FC1 ($DC8!))

The above equations ignore less compute-intensive mod-

ules, including residual connection, layer norm, input em-

bedding, and position embeddings. The internal architectures

vary between different LLMs. We only discuss the common

transformer structure in LLMs without loss of generality.

KV cache is an important design to speed up existing

LLM inference engines. In the attention module, the attention

computation of a token depends on all previous KV values

in the sequence. To avoid redundant KV recomputation, once

a token’s key and value are generated, they are stored in

a dedicated storage area on GPU, i.e., the KV cache. The

generation for the latter tokens of the sequence can visit

KV cache instead of recomputing KV values of history tokens.

2.2 LLM Serving

Once trained, LLMs can be deployed as a service to respond to

user requests. LLM inference systems process a user request

in two phases – prompt prefilling and response generation.

During the prompt prefilling phase, LLM performs a trans-

former forward pass with input prompt tokens, generating the

KV cache for them. In the response generation phase, LLM

generates new tokens autoregressively and puts the key-value

tensors of the newly generated token into the KV cache. One

sequence’s generation process continues until reaching an

end-of-sequence (EOS) token or a maximum token budget.

Inference systems typically process user requests in batch to

improve LLM serving efficiency. Instead of a stop-wait batch-

ing mechanism, which may incur high latency for early-arrived

requests, most current LLMs use continuous batching [61].

Specifically, the inference engine batches multiple requests in

the generation phase at a fine-grained iteration level, where

new requests can be added (exited) to (from) a batch dynami-

cally at each iteration. TTFT (Time To First Token) and TBT

(Time Between Token) are important metrics describing the

0

5

10

15

0 400 800 1200 0 5,000 10,000 15,000

Prompt Length

Output Length

C
o

u
n

t 
(K

)

# of Tokens

(a)

# of Tokens

(b)

0

0.5

1.0

C
D

F

Figure 3. Charactreistic of Multi-Round Conversation.

LLM serving quality. TTFT is the time it takes to generate

the first token; TBT represents the average time to generate a

token for each request except for the first token.

2.3 Stateful LLM Applications

The basic usage of LLM assumes that LLM inference is

stateless – user requests are independent and irrelevant to

previous ones, and the KV cache is discarded when the gen-

eration is finished. However, the increasing complexity of

LLM usage today provides user requests with rich contextual

contents, such as chat history and auxiliary documents, to help

LLMs provide context-dependent, accurate, and informative

responses. Hence, a request may rely on the context previously

assimilated by the engine, making LLM inference a stateful

task. Below, we characterize different stateful LLM tasks.

Multi-round conversations. Taking ChatGPT [40] as an

example, a user starts a conversation by creating a “New

Chat” session. In this session, the user keys in an instruction

and waits for the response from ChatGPT; based on the

response, the user can further send new questions to start

a next-round conversation. To produce better answers in a

multi-round conversation, the LLM generates a new response

by considering both the tokens from all previous conversation

rounds and the tokens from the current input.

A representative dataset of multi-round conversation is

ShareGPT4 [1], a trace of human conversations with GPT-4.

Figure 3a shows the average length of new prompt tokens

and output tokens in one round. The average input length of

each round is 66.8 tokens, and the output is 358.8 tokens.

Though one round’s input and output length is relatively short,

they gradually accumulate in the conversation’s history as the

dialogue progresses. Figure 3b depicts the CDF of the length

of history tokens (truncated at 16K), and we can see that the

length of half of the conversations is over 2.5K.

Long-context applications. Many LLM applications (e.g.,

LangChain [12]) also supplement user prompts with additional

contexts to help LLM react better.

• In contextual question and answer (Q&A) applications,

LLMs receive a long context text, such as an academic

paper, law document, or textbook, and answer related user

questions. For example, a user can upload a PDF of a

language programming guide; after processing it, the LLM

can answer the demo usage of different APIs.
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Tasktype Context Input Output

Paper Assistant 10603.5 142.7 404.8

GSM-100 [14] 5451.7 77.4 4.3

QuALITY [41] 7053.9 92.4 19.2

AVG. (20 sub-tasks) 16340.2 44.7 50.2

Table 1. Statistics of the L-Eval [5] Dataset.

• Retrieval-Augmented Generation (RAG) application is also

a popular workflow of LLMs [10, 29, 31]. In response to

user requests, RAG applications first search question-related

content in their inner databases or on the Internet. Then, the

retried documents and the user question are supplemented

to the LLM. LLM uses the retrieved auxiliary knowledge to

generate more accurate results for user questions.

L-Eval [5] is an open-sourced dataset tailored for long-

context LLM evaluation. It contains 20 sub-tasks, including

long context Q&A, few-shot examples helped reasoning, and

deducing the output of a piece of code. In Table 1, we present

the statistics of three representative sub-tasks in L-Eval. These

traces exhibit bimodal characteristics – the average length of

context contents can extend up to 16K. In contrast, the lengths

of instructions and outputs typically remain below 100.

2.4 State Restoration and Its Overhead

In stateful LLM inference, the KV cache of shared tokens can

be reused across different requests. Recent studies [8, 20, 60]

have explored caching and reusing the KV cache between

different requests on GPU to reduce the TTFT of user requests.

However, the limited memory capacity of GPUs poses a

significant challenge in retaining all necessary KV cache. For

instance, PagedAttention [28], a state-of-the-art KV cache

management technique, enables an A100-40G GPU to store

up to 17K tokens with Llama2-13B and 48K tokens with

Llama2-7B, which equates to only 1–3 extended contexts or

7–20 conversation sessions.

Due to the GPU memory limitation [57], current inference

systems often evict less frequently accessed KV cache to free

up space for more immediate contexts [28, 67]. When evicted

KV cache is needed again, it must be restored. We refer to

this process as state restoration in stateful LLM serving. Prior

work has demonstrated that state restoration is a prevalent

issue in inference systems. In multi-turn conversations, the

interval between interactions often leads to a low GPU cache

hit ratio [19], and in long context applications, the same

context may be reused hours apart [32].

Two primary approaches exist for restoring LLM state. The

first method is recomputation, which involves re-executing

the prefill phase to regenerate the KV cache from the original

tokens [7, 15, 28, 39]. The second method is offloading the

KV cache to host memory or storage devices [2, 19, 26, 32],

with it being transmitted back to GPU memory when needed

for subsequent requests.
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Figure 4. Comparison of State Restoration Overhead. We use

the L-Eval trace; Opt-30B runs on 4× A100-40G GPUs with tensor

parallelism, while the rest two run on one A100; 4× PM9A3 SSDs

are used as the storage backend to save offloaded KV caches.

Both state restoration methods result in substantial per-

formance degradation compared to the ideal case where no

restoration is needed. Our evaluation in Figure 4 shows that

the TTFT for recomputation is 20.0-26.0× slower than the

ideal case, while KV offloading is 6.5-13.0× slower.

A key point of the inefficiency of current state restoration

methods relates to how they utilize the hardware resources.

At one extreme, recomputation solely relies on GPU’s compu-

tation capability to restore the KV cache from tokens, whose

computational complexity increases quadratically [42] with

the sequence’s length. As the contrasting approach, KV offload

solely relies on host storage and PCIe bus to load large-volume

KV cache, whose size is 105 larger than that of history tokens

in typical LLM models [32]. As a result, both approaches

incur non-negligible overhead for KV cache restoration.

3 HCache: Caching the Hidden States

To accelerate the state restoration speed, we aim to seek a

new approach that simultaneously utilizes the computation

capability and transmission bandwidth, while reducing unnec-

essary data transfers and recomputations. Our initial attempt

is a simple combination of recomputation and KV offload.

Specifically, the contextual tokens are divided into two parts,

and we use recomputation and KV offload to restore them

concurrently; hence, the computation and transmission re-

sources can be utilized in parallel. However, this naive hybrid

approach still keeps the LLM forward pass or KV cache as is,

which does not fundamentally reduce the computation and IO

overhead, resulting in suboptimal performance (see §6.3.1).

To this end, we introduce HCache, a novel state restoration

method that efficiently utilizes both computational and I/O

resources with reduced computing and transferring overhead.

3.1 HCache Overview

Instead of directly restoring the KV cache, the core idea behind

HCache is to utilize the LLM’s intermediate activations (i.e.,

hidden states) at each transformer layer for state restoration.

Recall from Figure 2 that the hidden states represent the

input to each transformer layer. Within each transformer layer,

the KV tensor pairs of each token are derived directly from

the hidden states by performing the projection operation in

the attention module. Specifically, we can use the following
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equations to restore the KV cache for token 8:

 8! =, :
! · � 8!

+ 8! =, E
! · � 8!

where � 8
!

is the hidden state for a token 8 at layer !,  8
!

and+ 8
!

represents the key and value tensors for token 8 at that layer,

and, :
!

and, E
!

are the linear projection parameters.

An LLM serving system working with HCache makes

the following changes to reuse contextual contents. First,

hidden states should be saved for future reuse. Specifically, in

multi-round conversations, whenever a layer’s hidden states

is generated in a LLM forward pass, it is dumped to the

host storage concurrently with this layer’s computation; in

RAG applications, hidden states can be generated and saved

offline. Upon new user requests arrive, the related HCache is

retrieved from the host storage into the GPU memory, then,

we can use the GEMM operator to restore the KV cache from

hidden states with the above equation.

Importantly, transmission and computation can be pipelined

to utilize both the computation capability and transmission

bandwidth at the same time. As shown in Figure 5, the

transmission of !=+1 and recomputation from the hidden states

to KV cache of != can be done concurrently.

Next, We theoretically analyze how caching hidden states

can reduce both computational and data transfer volumes.

3.2 Restoration Cost Analysis

We compare HCache with the two aforementioned methods:

KV offload and recomputation. We analyze the restoration for

one transformer layer that uses muti-head-attention (MHA).

Restoration time with HCache. Restoration from hidden states

involves two parts: hidden states transmission and recom-

putation from the hidden states to KV cache. The time for

transmitting hidden states is:

�$ℎ8334= =

#B4@ ∗ �ℎ8334=

�,
,

where #B4@ indicates the number of tokens in the sequence,

�38334= is the LLM hidden dimension, and �, is the band-

width between hidden states’ GPU and storage backend. The

computation time1 from hidden states to KV cache is:

�ℎ8334= =

4 ∗ #B4@ ∗ �ℎ8334= ∗ �ℎ8334=

�!$%(
,

where �!$%( is the FLOPS of the GPU. With the computation-

transmission pipeline implemented in Figure 5, the end-to-end

restore time is dominated by the maximum of )ℎ8334= and

1A multiply-add operator is regarded as 2 float point operations.

�ℎ8334= . Hence, the state restoration time of HCache is:

)ℎ8334= =<0G (�$ℎ8334=,�ℎ8334=).

Restoration time with KV offload. The restoration process

of KV offload only involves transferring the KV cache from

the host to GPU memory, whose time is:

):E = �$ + =

2 ∗ #B4@ ∗ �ℎ8334=

�,
.

Restoration time with recomputation. The restoration pro-

cess of recomputation involves a full computation from history

tokens to their KV caches. We ignore the time required to

transfer tokens to GPU since their size is small.

�0CC= =

8 ∗ #B4@ ∗ �
2
ℎ8334=

+ # 2
B4@ ∗ �ℎ8334=

�!$%(

�5 5 = =

16 ∗ #B4@ ∗ �
2
ℎ8334=

�!$%(
)A42 = �0CC= +�5 5 = + n

=

24 ∗ #B4@ ∗ �
2
ℎ8334=

+ # 2
B4@ ∗ �ℎ8334=

�!$%(
+ n

Here n indicates the remaining computation overhead, includ-

ing normalization and residual connection, which are bounded

by $ (#B4@ ∗ �ℎ8334=) and can be negligible.

Comparison. For the I/O transmission part, the hidden state

tensors have the same shape as keys and values in the KV cache.

Hence, the I/O time of transmitting hidden states is half that

of directly transmitting the KV cache. For the computation

part. The relative speedup of HCache compared with recom-

putation is:

24 ∗ #B4@ ∗ �
2
ℎ8334=

+ # 2
B4@ ∗ �ℎ8334=

4 ∗ #B4@ ∗ �
2
ℎ8334=

= 6 +
#B4@

4 ∗ �ℎ8334=
.

Hence, the lower bound for the speed up is 6×. The computa-

tional speedup is attributed to two factors. First, the FFN and

attention modules are highly compute-intensive, reflected by

the constant 24 in the above equation. In contrast, the projec-

tion of hidden states to the KV cache is relatively lightweight,

corresponding to a constant of 4. This ensures a minimum 6×

speed-up. Second, the quadratic complexity attention compu-

tation is the dominant component for long sequences but is

unnecessary in restoring the hidden state. So HCache scales

linearly with history length.

Conclusion. As a whole, the transmission size of HCache is

always 2× less than that of transmitting the KV cache, while

the recomputation of KV cache from hidden states is at least

6× faster than token recomputation. This theoretical support

makes HCache beneficial on mainstream platforms (see §6.2).

Nevertheless, when employing HCache to existing LLM

serving systems, we still face two main challenges:

C1: Pipeline bubbles. As shown in Figure 5, the computation

and transmission of HCache restoration do not always take
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Figure 6. State Generation and Restoration Order. The high-

lighted red block: the hidden states of the 2=3 token at the 2=3 layer.

the same time. Hence, the actual restoration speed is bounded

by the slower one, which creates pipeline bubbles and wastes

system resources. In extreme hardware configurations, where

the IO speed far exceeds computation speeds, or vice versa,

HCache may not offer any benefits.

C2: Storage format. Unlike KV cache that owns dedicated

GPU memory space, hidden states are intermediate activations

in temporary buffers repeatedly reused among transformer

layers. Therefore, these hidden states should be dumped to

host storage immediately once they are generated. However,

hidden states’ generation and restoration order are inconsistent,

making it hard to design an efficient storage format to manage

hidden states. As shown in Figure 6a, the HCache is generated

autoregressively, exhibiting a layer-before-token order. In state

restoration, instead, the hidden states of multiple tokens are

restored as a batch at each layer (i.e., token-before-layer,

Figure 6b). As a result, a storage format optimized for state

saving (i.e., placing a token’s hidden states at different layers

in a continuous place) incurs random, small-sized IOs at

restoration, or vice versa.

4 HCache Design

To address the above challenges, we further enhance HCache

with bubble-free restoration and efficient storage management.

Figure 7 depicts the overall architecture of HCache and how it

interacts with an LLM inference engine. When a user request

arrives, the inference engine first decides whether the request’s

history states should be restored. If so, the inference engine

utilizes the bubble-free restoration scheduler (§4.1) to generate

an optimal restoration scheme to restore its KV cache (to solve

C1). With the restored KV cache, the user request is further

processed with prompt prefilling and token generation to

generate an answer. During the prefilling and token generation

phase, the storage manager (§4.2) efficiently saves the newly

computed hidden states to host storage (to solve C2). Since

HCache focuses on state restoration speed, we do not cache

and reuse KV cache in GPU.

By default, our storage manager utilizes SSDs as the back-

end storage devices. SSDs are cost-effective, offer substantial

capacity, and deliver high I/O bandwidth, making them ideal

for storing large volumes of hidden states. In environments

lacking SSDs, host DRAM can be used as an alternative.

LLM Engine

Host CPU

Host Storage

GPU

KV cache

Temp Buffer

Hidden State

Storage
Manager (§4.2)

Restoration
Scheduler (§4.1)

KV Cache Restoration Path Saving Path

Request Scheme

Figure 7. HCache Overview.

Previous research has suggested using a hierarchical storage

backend that combines host DRAM and SSDs [19]. They

also integrate prefetching and caching strategies, allowing

frequently accessed contextual states to reside in the host

DRAM. Contextual state caching is orthogonal to our work

and can be incorporated to enhance performance further.

4.1 Bubble-Free Restoration Scheduler

The bubble-free restoration scheduler combines different

restoration methods dynamically to eliminate pipeline bub-

bles. Specifically, the scheduler partitions a model’s state

across layers, with most states be managed via hidden states,

while using a resource-complementary method (token recom-

putation or KV offload) for other states to fill in the bubble.

For example, bubbles exist in transmission when the compu-

tation speed is slow, so we offload part of the model’s state

as KV cache to prevent the need for computation. HCache

determines an optimal partition scheme via offline profiling

of the hardware characteristics. We further illustrate how a

model’s state should be partitioned (§4.1.1) and the detailed

partition algorithm (§4.1.2).

4.1.1 State Partition Method. When employing different

restoration methods to eliminate pipeline bubbles, model

states are partitioned like prior work [17, 36], with each using

a different restoration method. There are two approaches to

partitioning the model state: token-wise partition and layer-

wise partition.

Figure 8a shows a LLM model with 6 layers and a history

context containing 3 tokens. With a token-wise partition

scheme, these states are vertically split into two parts, where

the first two tokens are managed via HCache and the rest

one is managed using a complementary method (e.g., KV

offload). State restoration with token-wise partition is shown in

Figure 8c. At layer 8, KV recomputation from hidden states of

the first two tokens is done concurrently with the transmission

of layer 8+1 (hidden states of the first two tokens and KV cache

of the 3rd token). In layer-wise partition, model states are

horizontally partitioned. As shown in Figure 8b, the first 4

layers of an LLM are managed with HCache while the KV

cache of the last two layers is offloaded to the host. State

restoration with token-wise partition is shown in Figure 8d,
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Figure 8. Two Ways to Combine HCache with KV cache. Li
and Tj indicate layer i and token j, respectively.

.
where the transmission of hidden states can occur continuously

without requiring synchronization at each layer, provided it is

faster than recomputation. Once complete, the KV cache of

the last two layers is fetched into GPU memory.

Performance considerations. In practice, token-wise par-

tition does not always fully eliminate the bubbles in state

restoration. We observe that the execution time of GEMM

operations does not vary proportionally with the number of

tokens involved. The GEMM kernel in the cuBLAS library

is well-optimized for standard matrix sizes. However, the

token-wise partition can generate a scheme that forms an

irregular matrix and is less optimized by cuBLAS. As a result,

executing a GEMM kernel with fewer tokens may consume

a similar amount of time as one with more tokens. Even

if we round the partition scheme to the nearest optimized

size, bubbles still exist in the computation and transmission,

resulting in suboptimal performance.

Such a performance issue does not exist in layer-wise

partition since all tokens at a layer are recomputed together.

Furthermore, current LLM engines typically set a fixed mini-

batch length to limit the intermediate buffer size and sequences

larger than a mini-batch will be split and processed sequentially.

Hence, We use the layer-wise partition and set the mini-batch

length to be an optimized size in cuBLAS.

4.1.2 State Partition Algorithm. We introduce the state par-

tition algorithm to generate a bubble-free restoration scheme

according to the hardware setups. We introduce two variables

– !� and !$ – to indicate the number of model layers managed

with HCache and other methods, respectively.

Specifically, on a platform with faster computation speed,

HCache is combined with token recomputation, where the first

!$ layers are restored with token recomputation, and the re-

maining !� layers with HCache. When recompute of the first

!$ layers. The hidden states of the latter layers are prefetched.

When token recomputation finishes, HCache restoration is

started to continue the computation. On a platform with faster

I/O transmission speed, HCache is combined with KV of-

fload. For the first !� layers, we copy their hidden states and

recompute them to restore the KV cache. Since the I/O trans-

mission of hidden states is faster, it will finish earlier than the

computation, so we copy the KV cache of the rest !$ layers

in the remaining time.

Our state partition algorithm sets !� and !$ such that data

transmission and computation finish almost simultaneously,

thus eliminating bubbles. To solve !� and !$ , we profile the

transmission and computation speed of a specific hardware

platform offline, where the transmission time of hidden states

is �$� , transmission time of KV cache is �$ + , computation

time from token is �)>:4=, from hidden states to KV cache

is �� . We formulate the bubble-free target as a min-max

optimization problem. Below is an example of combining

HCache with KV cache:
argmin
!� ,!$

max (�� ∗ !� , �$� ∗ !� + �$ + ∗ !$ )

subject to !� + !$ = #!0~4A

Given a hardware configuration, !� and !$ are derived via:

!� = ⌈
#!0~4A ∗ �$ +

�$ + +�� − �$�
⌉, if �� > �$�

!� = ⌈
#!0~4A ∗�)>:4=

�)>:4= + �$� −��
⌉, if �� ≤ �$�

!$ = #;0~4A − !�

4.2 HCache Storage Manager

The storage manager is tasked with managing contextual states

in host storage. We have adopted a storage format optimized

for state restoration, as reducing TTFT is our primary design

goal. Additionally, we introduce a two-stage state-saving

mechanism to mitigate the overhead associated with saving

newly generated states. Note that with our state partition

algorithm in §4.1.2, the contextual states at each model layer

are stored either in hidden states, KV cache, or original tokens.

Here, we focus on the management of hidden states since the

KV cache can be managed similarly.

4.2.1 Storage Format. We introduce a storage format de-

signed for fast restoration. Since we adopt a layer-wise

approach to restore the states for the history context, the

hidden states of all tokens from the same layer are copied

together. Conceptually, the hidden states of tokens in the same

layer is colocated in a continuous large data block to maximize

transferring bandwidth. In practice, we split the tokens of

one layer into multiple fix-sized (64 tokens) chunks. The

chunks of a layer are distributed on multiple SSDs following

the round-robin manner. The chunk-based storage format is

designed for the following reasons: First, when multiple SSDs

are present in the system, we should distribute the data of a

layer across all SSDs instead of a large continuous block on a
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single SSD. This can facilitate parallel I/O operations and en-

hance the transmission speed of one layer through bandwidth

aggregation. Second, LLM generates tokens autoregressively,

whose output length is unpredictable [28, 61]. This forbids us

from reserving the storage space for a layer’s hidden states as

an entire buffer – reserving space according to its maximum

length would result in serious internal fragmentation.

4.2.2 Two-Stage State Saving. Next, we explore how the

storage manager saves newly generated hidden states using a

chunk-based storage format. As we mentioned before, hidden

states are intermediate activations generated at each layer, if

they are not saved in a timely manner, computation tasks will

be blocked. In the token generation phase with continuous

batching enabled, a batch generates hidden states of different

sequences, which should be organized into separate chunks

before being saved. Directly transferring these hidden states

to different chunks at host storage can lead to numerous small

write operations, potentially compromising the efficiency of

the generation task.

We adopt a two-stage strategy to address this problem. First,

the hidden states of the batch, encompassing tokens from

various sequences, are collectively copied to the host memory

using a single cudaMemcpy call. This method effectively

snapshots the hidden states to the host, allowing the GPU

memory buffer to be properly reused for subsequent layers.

Second, a host daemon running on the CPU orchestrates chunk

management. It copies HCache to appropriate chunk buffers

and flushes them to storage devices.

In this way, the overhead of saving hidden states to host

storage is moved off the critical path of LLM processing;

meanwhile, small-sized writes are reorganized into large

chunks, which host storage (e.g., SSDs) favors.

5 Implementation

We implement HCache with 5731 lines of code in Cuda, C++,

and Python. Our implementation is based on DeepSpeed-

MII v0.2.0 [15], a state-of-the-art LLM serving system that

supports the SplitFuse [3] scheduling algorithm. We add sup-

port restoring from hidden states to KV cache in DeepSpeed-

MII. Specifically, we use the cuBLAS library to project

the hidden states to primeval KV values. Following prior

work [19], we write a custom kernel to apply the ROPE posi-

tion embedding [46] to the recomputed KV values and copy

the result to the KV cache.

Request scheduling. The scheduler of HCache derives from

the continuous batching [22] method. There are two main

phases in continuous batching, namely prefilling and decoding.

HCache adds an extra restoration phase. The request arrived

in the system with evited history KV cache will first execute

this phase with bubble-free restoration. When the restoration

phase is finished, The prefill phase is then conducted using

the request’s newly arrived prompt. Finally, the request is

added to the decoding batch. We also apply the SplitFuse [3]

scheduling algorithm to opportunistically fuse prefill with

decoding generation to mitigate the interference between

prefilling and decoding.

Pipelined state transmission. On the GPU side, we use

dedicated streams for state transmission – one for the upstream

state transmission and the other for the downstream state

snapshot. We use cudaEvent to coordinate the ordering of

operations among different streams. For example, the snapshot

of one layer’s hidden states is followed by an event, which is

waited by the first compute operator of the next layer so as to

keep the buffer a consistent version when accessed.

Storage management. To save hidden states, we use 8 back-

ground threads on the host side to collect dumped hidden states

and append them to corresponding data chunks. Once a chunk

is fully populated, it is promptly written to the NVMe de-

vice. To restore hidden states, similar to FlashNeuron [9], we

co-use SPDK [59] and GDRCopy [37] to realize GPUDirect

Storage, which transfers data between the GPU and SSD

directly. Specifically, we pin several memory buffers on the

GPU’s BAR (Base Address Register) space in advance; when

the GPU reads data from the SSD, we set the NVMe read

command’s destination address as the exposed GPU BAR

address, thus achieving a direct P2P copy, which eliminates

redundant memory copies with minimized I/O latencies.

Multi-GPU support. We also add support for HCache to

serve large models that run on multiple GPUs. With tensor

parallelism, each GPU node should have a full version of

hidden states to compute the KV cache. To avoid redundant

read of the hidden states from different GPUs, we let all

GPUs read disjoint shards (split by token) of hidden states

concurrently. This operation can aggregate the read bandwidth

of all GPUs with no read amplification. Then, GPUs run an all-

gather communication operator to reconstruct the full hidden

state from shards. Since the GPU is connected via the fast

NVlink interconnect, the all-gather operation will only incur

a small overhead compared with the transmission part. With

pipeline parallelism. The restoration of each layer’s HCache

is independent of each other. So, each GPU node can fetch

the hidden states of its responsible layers concurrently and

recompute it to attain the KV cache of corresponding layers.

6 Evaluation

We evaluate HCache to answer the following questions:

• How does HCache perform in terms of TTFT and TBT

compared to state-of-the-art state restoration methods?

• How does HCache perform on platforms with various GPUs,

storage devices, and context length?

• How do HCache’s individual techniques affect HCache’s

performance?

Testbed. Unless otherwise stated, all our experiments are

conducted on a server equipped with 4× A100-40G SXM4

connected via NVLink. The host has 2× AMD EPYC 7642
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Figure 9. Overall Performance Results On ShareGPT4 Trace.

CPUs, 256G DDR4 memory, and 4× Samsung PM9A3 4TB

enterprise SSDs. In our sensitivity experiments, we change

the hardware configuration by using cloud servers equipped

with different GPUs. For these cloud servers, we directly

use the host DRAM as the storage backend. The hardware

characteristics of these GPUs are shown in Table 2.

Models: We use Llama2-7B, Llama2-13B, OPT-30B as our

test models. We expand the maximum context length of these

models to 16K to accommodate L-Eval benchmarks and long

conversation history. For Llama2-7B/13B, we use a single

A100 GPU to serve them. For OPT-30B, we run it on 4 A100

GPUs with tensor parallelism unless otherwise stated. We use

the ShareGPT4 and L-Eval described in §2.3 as our test traces

to imitate the real-world LLM use cases like multi-round

conversation chatbot or RAG application.

Metrics. When evaluating the overall performance, we report

TTFT (Time to First Token), which is the duration of the

restoration and prefill phase, and TBT (Time between Token),

which represents the average time taken to generate a token

GPU HBM Size FLOPS★ Transmission Speed

A100 40G 312T 32GB/s

A30 24G 165T 32GB/s

4090 24G 330T 32GB/s

L20 48G 120T 32GB/s

H800 80G 990T 64GB/s

Table 2. Hardware Characteristics of Different Platforms.

Note that ★ indicates the FLOPS of FP16 operations.

for each request except for the first token. TTFT is highly

related to user experiences, and we mainly report TTFT to

show HCache’s performance improvements. We report TBT

to prove that HCache poses negligible impact on decoding

requests. In other case studies, we run restoration requests

with a batch size equal to 1, so we report the restoration speed

instead, which is defined as the number of restored historical

tokens divided by the restoration time.

Baselines. We compare HCache to the following baselines.

Recomputation: DeepSpeed-MII[15] is an LLM serving sys-

tem that supports the SplitFuse scheduling algorithm and uses

PagedAttention to manage KV cache. We use it as the base-

line for token recomputation. KV offload: AttentionStore [19]

offloads KV cache to multi-tiered secondary storage. We im-

plement it on top of DeepSpeed-MII to serve as the KV

offload baseline. We do not implement the decoupled position

embedding because we already expand the context length for

models. Ideal: We also implement an ideal system without the

restoration overhead. Here, we do not keep all KV caches in

GPU memory; instead, we allocate the placeholder KV values

in GPU, which are used repeatedly across all user requests.

This achieves the theoretical lower bounds for the TTFT and

TBT metrics, assuming all the history KV cache is cached on

GPU and reused.

6.1 Overall Performance

6.1.1 Multi-Round Conversation. We evaluate the over-

all performance of HCache against baseline methods in the

multi-round conversation setting with ShareGPT4. In this
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Figure 10. Performance of Long-Context Applications.

experiment, we use 4 SSDs as the storage backend. Follow-

ing prior work [19, 28], we set the arrival time of different

sessions with the Poisson distribution. The interval between

conversation rounds in one session is set to 30s. All restora-

tion methods do not reuse the KV cache on GPU for a fair

comparison. The KV cache are evicted when one round of

conversation ends.

TTFT and throughput. Figures 9a-c show the TTFT under

different request rates in the multi-round conversation. Overall,

HCache can provide 1.27-1.90× TTFT speedup compared

with the KV offload and 2.21-3.57× better than token recom-

putation. For 7B/13B models, the one running GPU has 4

SSDs, providing sufficient IO bandwidth for state restoration.

Hence, the KV offload method is fast, but our methods can

still be 1.27-1.60× faster than it. Instead, OPT-30B runs on 4

GPUs, each with one SSD, so the restoration time of OPT-30B

is longer, and HCache can achieve up to 1.90× TTFT speedup

compared with KV offload.

The 13B model has a lower peak throughput compared to

7B/30B models. This is bounded by the limited GPU memory

for the KV cache. The throughput of different restoration

methods is nearly the same in this case. For the 7B/30B

model, HCache can sustain up to 11% more requests than

KV offloading since the restoration cost for HCache is lower.

TBT. Figures 9d-f show the TBT of different models in the

multi-round conversation setting. Compared with the ideal

case, in which no restoration is needed, HCache’s TBT is

at most 4% higher, almost the same as the ideal case. The

low TBT overhead benefits from the high restoration speed of

HCache , which reduces GPU time spent on the restoration,

so the token generation is stalled long.

6.1.2 Long-Context Applications. We evaluate the overall

performance of HCache against baseline methods in the

long-context applications setting with the L-Eval trace. Since

the GPU HBM can only serve 1-3 long-context requests,

we evaluate different models with a batch size equal to 1.

Model Schedule
Per Token Storage Cost

HCache KV Offload

7B 31 H + 1 KV 132 KiB 256 KiB

13B 36 H + 4 KV 210 KiB 400 KiB

30B 40 H + 8 RE 280 KiB 672 KiB

Table 3. Scheduling Results and Storage Cost. H, KV, and RE

indicate hidden states, KV cache, and recomputation, respectively.

Figure 10 shows the TTFT of three representative subtasks

and the sampled 200 requests from the trace (i.e., mixed).

HCache can achieve 1.62-1.93× speed up for TTFT compared

over KV offload and 2.66-5.73× over token recomputation. It

is worth noticing that these tasks’ history length spans within

a large range from 4K to 16K, demonstrating HCache’s

excellent scalability.

6.1.3 In-Depth Analysis. In Table 3, we report the schedule

results of HCache, in terms of how model layers are managed

and the per-token storage space consumption. We also report

the storage cost of KV offload as a comparison. Specifically, the

7B model on one A100 has balanced speed for recomputation

from hidden states into KV cache and the transmission of

hidden states, so we use hidden states for 31 layers and only

transmit the KV cache for one layer to fill in the bubble. For

the 13B and 30B model, HCache use hidden states for more

than 80% layers, while the rest of the layers are managed via

different resource-complementary methods. Regarding space

consumption, the size of hidden states for one token is half

that of KV cache. Combined with the zero-bubble scheduler,

some layers may not even need to be stored because they can

be recomputed from tokens. As a result, HCache’s per token

storage space is 1.92-2.40× lower than KV offload. To achieve

a balanced speed between computation and transmission

using only hidden states, approximately 24GB/s, 21GB/s, and

37GB/s of storage bandwidth are needed for the 7B, 13B, and

30B models, respectively.

6.2 Sensitivity Analysis

The state restoration speed of an LLM is highly relevant to the

model size, IO transmission bandwidth, computation power,

and historical context length. We vary them to analyze the

sensitivity of HCache against baseline methods.

6.2.1 Varying GPU Devices. The restoration phase of

HCache includes the projection of hidden states to KV cache,

so its performance is sensitive to the computation power

of GPU. We evaluate the restoration speed of HCache and

baselines on various GPU platforms. We use host DRAM as

the storage backend so that the transmission speed is not the

bottleneck. Figures 11a-c shows that HCache outperforms

KV offload by 1.33–1.81× and Recomputation by 5.04–9.05×

in restoration speed across different platforms. Platforms with

low computation capability are unfriendly to HCache, such

as running a 7B model on an A30 GPU. In this case, HCache

computation is longer than transmission and makes the speed
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Figure 11. Sensitivity Analysis by Various Factors. (a-c): Varying GPU computation capability and using DRAM as the storage backend.

(d-f): Varying number of SSDs in the default testbed. (g-i): Varying context length with the default testbed.

up less than 2×. Even so, HCache still restores 1.33× faster

than KV offload. On platforms with faster computation speeds,

HCache shows improved performance, achieving a 1.66×

increase on A100 GPU and a 1.77× increase on the H800

GPU for 13B models compared to KV offload. Compared

to token recomputation, HCache achieves 5.04-9.05× speed

up on different GPUs. This is attributed to the 6× theoretical

speedup against token recomputation by skipping the attention

and FFN modules.

6.2.2 Varying Storage Bandwidth. LLM state restoration

is sensitive to the transmission speed. We evaluate the restora-

tion speed of HCache and baselines with different numbers

of disks. One PM9A3 SSD provides a read bandwidth of

6.9 GB/s, and using 4 disks can saturate the upstream PCIe

bandwidth of the A100 GPU. For the 30B model, we use

DRAM to simulate 8-16 disks since our platform does not

have enough PCIe slots. The history length is set to 1024.

Figures 11d-f present the sensitivity evaluation results re-

lated to transmission speed. In terms of the restoration speed

across various disk configurations, HCache significantly out-

performs KV offload, delivering a 1.7 to 2.6× improvement

and surpasses recomputation with a 2.3-6.1× enhancement.

For platforms with fewer disks, IO transmission can be slower

than computation tasks; based on our theoretical analysis,

HCache can perform at least 2× better, and the bubble-free

scheduler can bring extra speed up. For example, on the plat-

form with one SSD per GPU, the overall improvement of

HCache over KV offload is 2.09-2.66×. For platforms with

more disks, instead, the recomputation operation in HCache

can be longer than the transmission in this setting, so the speed

up can be less than 2×. However, the recomputation overhead

is much lower than token recomputation. The overall speedup

is 1.33-1.81× on 7B-30B models compared with KV offload

and 5.46-6.08× compared with recomputation from the token.

6.2.3 Varying Sequence Length. We further investigate

the impact of sequence length on HCache’s restoration speed.

Following the same configuration as the overall experiment, we

test different models’ restoration speeds on A100 GPUs with 4

SSDs by varying the history length. As shown in Figures 11g-i,

token recomputation can not scale well with the increasing

history length; the restoration speed of a 7B model drops by

28% as the history length increases from 1K to 16K. Token

recomputation’s quadratic complexity attention mechanism

incurs a high overhead in contexts with a long history. The

KV cache can scale well with different history lengths because

its transmission size is proportional to the number of tokens.

HCache also scales well with different history lengths for

two reasons. First, the transmission size of hidden states and

recomputation cost from it to KV cache are all proportional

to the number of tokens (see §3.2). Second, HCache has the

bubble-free restoration scheduler and may opportunistically

combine the usage of the token recomputation to fill in the

bubble in the short context. With long historical contexts, the
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scheduler detects that token computation is very expensive

and falls back to the HCache-only approach.

6.3 Ablation Study

6.3.1 Bubble-Free Scheduler. We first compare different

scheduling methods for state restoration. We implement two

variants of HCache, including HCache-O and Naive hybrid.

HCache-O only uses hidden states for state restoration without

the bubble-free scheduler. Naive Hybrid uses the bubble-free

restoration scheduler to mix token recomputation and KV

offload without using hidden states. We compare them under

three hardware settings: balanced, compute-, and IO-sufficient.

The results are shown in Figure 12. Without hidden states,

Naive hybrid is the best method that uses both compute and

transmission resources. HCache outperforms this approach

by 1.28-1.42×. Both methods have no bubbles, so the perfor-

mance gain of HCache comes from the hidden states as it has

theoretically lower computational and IO overhead.

The bubble-free scheduler plays a key role on resource-

skewed platforms. HCache-O incurs pipeline bubbles and

waste resources. For example, in the IO-sufficient setting, the

bubble in the HCache-O lets it be 13% slower than KV offload

because the recomputation in HCache is slow and IO resources

are wasted. The bubble-free scheduler can integrate HCache-

O with resource-complementary methods, thus improving

the speed of HCache-O by 1.35-1.64× in skewed hardware

configuration and making HCache consistently perform better

than KV offload by 1.45-2.66×.

6.3.2 State Partition Methods. We compare different meth-

ods to partition the state of the model. We measure the restora-

tion speed of the 13B model using history contexts with 1024

tokens. We run the model on one A100 with one SSD. With

the layer-wise partition, our algorithm produces a scheme that

T
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s
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Figure 14. Ablation Study on Two-Stage HCache Saving.

uses hidden states for 31 layers and token recomputation for

the remaining 9 layers. Instead, a naive token-wise partition

uses hidden states for 794 tokens and token recomputation

for the remaining 230 tokens. A round-up optimization over

the token-wise partition uses the nearest optimal size (i.e.,

768) to manage tokens with HCache. As Figure 13 shows,

the restoration speed with the naive token-wise partition is

12% slower. While the round-up optimization can improve

performance by issuing a more performant cuBLAS kernel,

it is still 7% slower than layer-wise partition because of the

unbalanced workload in computation and transmission. As

auxiliary information, we also report the restoration time of

GEMM operation in one layer with varying numbers of tokens

(see Figure 13b).

6.3.3 Two-stage State Saving. To evaluate the effectiveness

of the two-stage hidden states saving strategy. We implement

a variant of HCache, which directly saves hidden states to

SSDs (i.e., DirectIO in Figure 14). We test the TBT with

different numbers of sequences in the decoding batch and set

the history length of each to 512.

As shown in the figure, HCache’s TBT is consistent with the

ideal case. This is because cudaMemcpy can efficiently copy

the hidden states to host DRAM. DirectIO achieves a similar

effect when the batch size is small because the I/O time is less

than one layer’s decoding time. However, when the batch size

is large, DirectIO can not store one batch’s hidden states to the

device on time and will stall the decoding phase. DirectIO’s

TBT can be 34% higher with the 7B model when the batch

size reaches 16. With the 13B model, DirectIO’s TBT is

less significant because each layer’s decoding time becomes

longer. However, as the batch size increases to 32, DirectIO

still increases TBT by 13%.

It is important to note that no stalling occurred during hidden

state snapshots in our experiments. For example, prefilling

1,024 tokens in a single layer of the Llama2-13B model

generates approximately 10MB of hidden states in 3ms. This

results in an equivalent bandwidth of 3GB/s, which is lower

than the PCIe bandwidth. The hidden state generation speed

during the decoding phase is even slower.

6.4 Performace with on GPU KV Reusing

Real-world LLM serving systems [20, 67] typically reuse the

KV cache on GPU. We evaluate the TTFT of HCache against
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baseline state restoration methods, along with a GPU-resident

KV cache.

In this experiment, we use the L-Eval dataset and reuse

the KV cache for long-context tasks on the GPU, employing

an LRU-based cache, as done in prior work [67]. When a

cache miss occurs on the GPU, the KV cache is restored

using different state restoration methods. Following prior

work [45, 55, 56], we synthetic the arrival pattern of contexts

in the L-Eval dataset with varying Zipfian skewness values

(U). We evaluate the 7B model with 4 SSDs, and we report

both the cache hit ratio and TTFT under different skewness

levels.

The results are shown in Figure 15. With a uniform arrival

pattern, the cache hit ratio is 15%, and the TTFT is similar to

the overall experiment, which does not incorporate caching.

In the uniform setting, HCache is 1.67× faster than KV

offloading. As the skewness increases from uniform to U = 2.0,

the cache hit ratio rises to 94%, allowing the GPU cache

to significantly reduce TTFT by 3.76× to 10.03×. A high

cache hit ratio diminishes the performance gains of HCache

due to fewer state restoration events. Nevertheless, HCache

remains 1.15× faster than KV offloading and 1.98× faster than

recomputation in high-skewness workloads.

7 Related Work

Stateful LLM optimizations. Recent work optimized for

stateful LLMs all maintain the KV cache as is. Prompt-

Cache [20], SGLang [67] and ChunkAttention [60] proposes to

cache and reuse the on-chip KV cache for shared tokens across

different requests. They optimize the GPU cache hit path and

are complementary to HCache which optimize the cache miss

path. For larger than GPU memory KV cache management, At-

tenionStore [19] offloads the KV cache to tiered host storage,

including DRAM and SSDs. RAGCache[26], Pensieve[62],

and APIServe [2] maintain a multi-tier KV cache storage sys-

tem across GPU memory and host DRAM based on hotness

and restoration overhead. FlexGen [44] is an offline inference

system that offloads both KV cache and output activations of

each layer to facilitate batched inference. Our work is distin-

guished from them by exploiting hidden states, and the above

caching mechanisms can be further applied in our system to

boost performance.

LLM state compression. One alternative to reducing LLM’s

state restoration time is to compress the KV cache, but at the

cost of compromised model accuracy. Instead, HCache is a

lossless method for state restoration.

Quantization [16, 21, 23, 27, 33, 58, 63] is the represen-

tative methods for KV cache compression. These methods

compress the KV cache from 16-bit into 4-bit or even lower.

CacheGen [32] is the most relevant work that combines KV

offload with quantization. CacheGen mitigates the KV trans-

ferring overhead by reducing its size with quantization-based

compression algorithms. These quantization-based methods

can be applied in HCache to reduce the size of hidden states.

Moreover, LLM weight quantization methods [18, 30, 54, 65]

are also applicable to reduce computing overhead and can be

combined with HCache to improve state restoration speed.

Token drop methods. Some recent work [34, 64] drops the

KV cache of less important tokens directly based on attention

scores. These methods reduce the KV cache size by reducing

the number of tokens that need to be stored. They can also

be integrated into HCache to reduce the transmission and

computation overhead.

MQA and GQA. Algorithm improvements like MQA [43] and

GQA [4] have been designed to reduce the sizes of KV cache

by using low-rank KV representation. These methods can

apply to HCache by first projecting the hidden states into

a low-rank representation and then storing it. This involves

changing the model structure, which is beyond the scope of

this paper. HCache can currently support LLMs using the

MHA mechanisms without any change of the model structure,

including 20,000 famous LLM models on Hugging Face like

Llama2 [49], Gemma [47], Phi2 [25], and Qwen1.5.

8 Conclusion

We present HCache, a novel method for LLM state restora-

tion. HCache stores the intermediate activation of LLM and

combines the transmission and computation resources to re-

store the LLM state with low overhead. To further improve

HCache’s performance, we propose bubble-free restoration to

use resource-complementary methods to improve the restora-

tion speed, and introduce a chunk-based storage layout for

HCache and save the HCache using a two-stage strategy.

We evaluate HCache with a range of models and hardware

platforms. The experimental results show that HCache can

reduce TTFT by up to 1.93× compared with KV offload

and 5.73× compared with token recomputation. Moreover,

HCache can also reduce the storage cost by 1.92-2.4×.
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