
This paper is included in the Proceedings of the
19th USENIX Conference on File and Storage Technologies.

February 23–25, 2021
978-1-939133-20-5

Open access to the Proceedings
of the 19th USENIX Conference on

File and Storage Technologies
is sponsored by USENIX.

Concordia: Distributed Shared Memory with
In-Network Cache Coherence

Qing Wang, Youyou Lu, Erci Xu, Junru Li, Youmin Chen, and
Jiwu Shu, Tsinghua University

https://www.usenix.org/conference/fast21/presentation/wang

Concordia: Distributed Shared Memory with In-Network Cache Coherence

Qing Wang, Youyou Lu∗, Erci Xu, Junru Li, Youmin Chen, and Jiwu Shu∗

Tsinghua University

Abstract
Distributed shared memory (DSM) is experiencing a resur-

gence with emerging fast network stacks. Caching, which is
still needed for reducing frequent remote access and balanc-
ing load, can incur high coherence overhead. In this paper,
we propose CONCORDIA, a DSM with fast in-network cache
coherence backed by programmable switches. At the core of
CONCORDIA is FLOWCC, a hybrid cache coherence protocol,
enabled by a collaborative effort from switches and servers.
Moreover, to overcome limitations of programmable switches,
we also introduce two techniques: (i) an ownership migra-
tion mechanism to address the problem of limited memory
capacity on switches and (ii) idempotent operations to handle
packet loss in the case that switches are stateful. To demon-
strate CONCORDIA’s practical benefits, we build a distributed
key-value store and a distributed graph engine on it, and port
a distributed transaction processing system to it. Evaluation
shows that CONCORDIA obtains up to 4.2×, 2.3× and 2×
speedup over state-of-the-art DSMs on key-value store, graph
engine and transaction processing workloads, respectively.

1 Introduction
Distributed Shared Memory (DSM) enjoyed a short heyday
(circa early 1990s) by offering a unified global memory ab-
straction. Yet, it later failed to entertain a greater audience
due to the unsatisfying performance atop the low-speed net-
work [28]. Recent advancement in high-performance network
technologies prompts a new look into DSM. With optimiza-
tions across the network stack (e.g., RDMA), the bandwidth
can now surge to 100Gbps or even 200Gbps [1], and the
latency drops to less than 2µs [14]. Researchers take this
opportunity to systematically rethink the DSM design and
have achieved a string of successes in both academia and
industry [4, 20, 47, 51, 61]. For example, Microsoft has devel-
oped FaRM [4], a fast RDMA-based DSM; on top of FaRM,
engineers have built key-value stores [25], distributed trans-
action engines [26, 59], and a graph database called A1 [19]
(A1 is used by Microsoft’s Bing search engine).

But there is still at least one more hurdle to cross: cache
coherence. Caching is still important to DSM for obtaining
competitive performance (e.g., local memory has 2-4× higher
throughput and 12× lower latency against RDMA [60])
and balancing load (e.g., caching the hot data to multiple

∗Jiwu Shu and Youyou Lu are the corresponding authors.
{shujw, luyouyou}@tsinghua.edu.cn

servers [27]). Yet, distributed caching always comes with co-
herence, which is notorious for its complexity and overhead1.
Specifically, coherence incurs excessive communication for
coordination, such as tracking cache copies’ distribution, in-
validation and serializing conflicting requests (i.e., requests
targeting the same cache block), thereby severely impacting
the overall throughput. For example, even in the RDMA-
based ccNUMA [27], introducing a slight dose of cache co-
herence by increasing the write ratio from 0 to 5% can reduce
the performance by 50%.

The advent of programmable switches has changed the
landscape of various classic system architectures [23, 33, 34,
38, 41, 42, 56, 57, 65, 67, 68]. Here, we argue that leverag-
ing a customizable switch to reduce the overhead of cache
coherence in DSM is promising. First, since a switch is the
centralized hub of inter-server communication, reconfiguring
it to handle cache coherence can significantly reduce coordina-
tion between servers. Second, the latest switches can usually
process several billion packets per second, enabling them to
quickly handle coherence requests. Third, the switch owns an
on-chip memory, which allows storing cache block metadata
in the switch. Moreover, the on-chip memory can support
atomic read-modify-write operations [33], thereby easing the
effort to synchronize conflicting coherence requests.

However, simply shoehorning all cache coherence logic
into switches can be impractical. First, cache coherence proto-
cols are too complicated for programmable switches [13, 35]
which only have limited expressive powers due to their re-
stricted programming model and demanding timing require-
ments [49]. Second, the on-chip memory is usually small
(e.g., 10-20 MB), making it unlikely to accommodate the
metadata of the entire cache set. Third, failure handling can
be tricky. Cache coherence protocol generally uses a state
machine to perform the state transitions. Hence, if deployed
on switches, a common fault, such as a packet loss, could lead
a switch into an erroneous state (e.g., deadlock by repeated
locking due to retransmission).

In this paper, we present the CONCORDIA, a high-
performance rack-scale DSM with in-network cache coher-
ence. The core of CONCORDIA is FLOWCC (in-Flow Cache
Coherence), a cache coherence protocol that is jointly sup-
ported by switches and servers. In FLOWCC, switches, as
the data plane, serialize conflicting coherence requests and

1“There are only two hard things in Computer Science: cache invalida-
tion and naming things.”—Phil Karlton

USENIX Association 19th USENIX Conference on File and Storage Technologies 277

multicast them to the destinations, reducing coordination be-
tween servers. Servers, on the other hand, act as the control
plane that performs state transitions and sends correspond-
ing updates to switches. Specifically, we utilize the on-chip
memory to store metadata of cache blocks and implement
reader-writer locks for concurrency control.

CONCORDIA also designs an ownership migration mech-
anism to manage the metadata of cache blocks. The mecha-
nism moves the ownership of cache blocks between switches
and servers dynamically according to the coherence traffic,
namely only keeping the hot ones in the switches. To han-
dle packet loss, we make all operations both in servers and
switches idempotent, guaranteeing exactly-once semantics.

We implement CONCORDIA with Barefoot Tofino switches
and commodity servers and evaluate it with three real data-
center applications: distributed key-value storage, distributed
graph computation and distributed transaction processing. Ex-
perimental results show that CONCORDIA obtains up to 4.2×,
2.3× and 2× speedup on key-value store, graph engine and
transaction processing, respectively, over two state-of-the-art
RDMA-based DSMs, Grappa [51] and GAM [20].

To sum up, we make the following contributions:
• We propose CONCORDIA, a high-performance rack-

scale DSM that incorporates an in-network cache co-
herence protocol, namely FLOWCC.
• We design an ownership migration mechanism and idem-

potent operations to overcome the restriction of current
programmable switches.
• Evaluation shows that CONCORDIA gains significant

performance improvement against two state-of-the-art
DSMs in various applications.

2 Background
In this section, we provide background on cache coherence
protocols and programmable switches.

2.1 Cache Coherence Protocols
Cache coherence protocols are studied extensively in both the
systems and architecture communities [50, 53]. We briefly
describe the two main protocol types used in DSMs below.
Directory-based protocols keep track of servers that hold
cache copies. Each data block has a home node2 that keeps
the states and locations of cache copies. The home node
updates and notifies the state of the data block to all cache
copies, and serializes conflicting cache coherence requests.
The limitation is that the home nodes induce extra round trips,
and the home nodes for hot data are under heavy load.
Snooping protocols do not keep track of cache copies. In-
stead, they broadcast cache coherence requests to all the
servers. The limitation is that the broadcast can easily over-
whelm the network, and wastes the CPU cycles of servers
that do not contain the requested cache block. In addition,

2In this paper, we use “server” and “node” interchangeably.

Match pkt.type == 0x11

Action pkt.ttl = pkt.ttl-1

Parser
Tables
Arrays
Stage 1 Stage 2 Stage n

… Deparser

Ingress Pipeline Egress Pipeline

Match pkt.type == 0x11

Action ttl_arr[pkt.ttl]++
type : 0x11
ttl : 0x24

pkt

ttl_arr
97
5

27
…

Match-Action TablePHV
Register Array 0

1
2

Tables
Arrays

Tables
Arrays …

Figure 1: Pipelines in Programmable Switches. In this figure, for
a packet whose type field is 0x11, the switch reduces its ttl (i.e.,
time to live) field via the first match-action table, and then updates
the register array ttl arr via the second table. The kth item in
ttl arr records the number of packets whose ttl field is k.

since ordered and reliable broadcast systems are equivalent
to consensus [24], it is intractable to coordinate conflicting
cache coherence requests in snooping protocols.

2.2 Programmable Switch

Emerging programmable switches like Barefoot Tofino [2]
provide programmable capacity. Such a switch follows recon-
figurable match table (RMT) architecture [18] and usually has
multiple ingress and egress pipelines. Each pipeline contains
multiple stages, and packets are processed by these stages in
sequential order, as shown in Figure 1.

Developers can program three components for switches:
the parser, register arrays and match-action tables. The parser
defines packet formats. A register array is a collection of
memory items (e.g., tll arr in the Figure 1); we can read,
write, and conditionally update these items via index numbers
(i.e., positions). A match-action table specifies (i) a match
key from a set of packet fields (e.g., in the Figure 1, the type
field is the match key of both tables), and (ii) a set of actions,
each of which consists of instructions about modifying packet
fields and register arrays. A register array or match-action
table belongs to only one stage of a certain pipeline, which
can be specified by developers.

When a packet arrives at an ingress port, the parser analyzes
it and generates a packet header vector (PHV), which is a set
of header fields (e.g., UDP port). The PHV is then passed to
match-action tables in the ingress pipeline in a stage-by-stage
manner. If the specific fields of the PHV match an entry in
a match-action table, the corresponding action is executed.
Before leaving the ingress pipeline, the packet is reassem-
bled by the deparser. Then there are two cases (realized by
setting a metadata field): ¶ the packet is resubmitted, i.e., it
re-enters the ingress pipeline. · the packet is switched to the
egress pipeline, experiencing processing similar to the ingress
pipeline, and it finally is emitted via an egress port.

We summarize two properties of an RMT pipeline, which
can simplify the design of stateful protocols in switches:

P1. Atomicity Property. Due to the pipelined architecture,
only one packet is processed in a stage at any time. In other
words, operations for multiple register arrays in the same
stage are atomic.

278 19th USENIX Conference on File and Storage Technologies USENIX Association

0

20

40

60

(a) Cluster Throughput

No Sharing 10% Sharing 20% Sharing
Th

ou
gh

pu
t (

M
op

/s
)

(b) Cluster Network Traffic

of
 P

ac
ke

t (
m

illi
on

)

18X

7X

13X

9X50%

25%

0

5

10

15

Recv Send

Figure 2: Impact of Cache Coherence.

P2. Ordering Property. Suppose there are two packets A,B,
and they are being processed in stage SA and SB, respectively.
If SA < SB in time t (e.g., A in stage 1 and B in stage 2),
SA < SB holds at any time after t within this pipeline.

3 Motivation
This section revisits cache coherence under fast network en-
vironments via an experiment and discusses challenges in
designing an in-network cache coherence protocol.

3.1 Revisit Cache Coherence with Fast Network
To understand the performance impact of cache coherence,
we use a micro benchmark to evaluate GAM [20], a state-
of-the-art RDMA-based DSM backed by a directory-based
protocol. In this benchmark, each node in the 8-node cluster
launches four threads to issue 8-byte write/read operations to
global memory with a write ratio of 50%. Here, we define
the sharing ratio as the percentage of operations that access
shared data. By varying the ratio from 0 (i.e., no sharing) to
20%, we can see, in Figure 2(a), that the throughput degrades
by 75%. Further, we collect the packets received and sent by
all nodes (Figure 2(b)). The number of packets across network
increases dramatically (up to 18×) when more data is shared
because of expensive distributed communication in cache
coherence protocols. From the benchmark, we conclude that
even with fast networks, existing cache coherence protocols
dramatically limit system performance.

3.2 Challenges
There are three challenges to design a fast cache coherence
protocol using programmable switches:
• The mismatch between the complexity of cache coher-
ence protocols and the restricted expressive power of pro-
grammable switches. Existing cache coherence protocols are
intricate, because of complex state transitions in the face of
concurrent and asynchronous requests. However, the expres-
sive power of programmable switches is limited: all proce-
dures must be represented as match-action tables. Moreover,
the processing pipeline must meet the hardware resource and
timing requirements of switch ASICs [34]. For example, ta-
bles with dependencies must be placed in different stages.
• Limited switch memory capacity. Current pro-
grammable switches have limited on-chip memory capacity
(10-20MB) [37]. Furthermore, we need to reserve some mem-
ory to serve normal network protocols. Thus, switches are
unable to manage the coherence of all cache blocks.
• Packet loss. Switch buffer overflow can cause packet

ToR Switch Data Plane

L2/L3
Routing

Lock-check-
forward Pipeline

ToR Switch Data Plane

Shadow
Node

Global Memory

Cache

App Threads
read/write

Memory Node 0

Home Agent Cache Agent

Global Memory

Cache

App Threads
read/write

Memory Node n

Home Agent Cache Agent

Figure 3: CONCORDIA Overview. Global memory from all memory
nodes constitutes a logically unified address space (the dashed box).

loss. Existing in-network systems such as NetCache [34] and
NetChain [33] rely on client-side retries to address this prob-
lem. However, it is hard to guarantee exactly-once semantics
by simply retransmitting lost packets in DSMs, considering
that a cache coherence request always involves multiple round
trips and packets.

4 CONCORDIA Overview
CONCORDIA is a rack-scale DSM that leverages pro-
grammable switches to accelerate cache coherence. Figure 3
shows its overview, which consists of a set of memory nodes,
a top-of-rack (ToR) switch, and a shadow node.
Memory nodes. Memory nodes run distributed applications
and provide memory for them. Each memory node divides
its DRAM into two parts: a global memory and a private
local write-back cache. The global memory from all mem-
ory nodes constitutes a logically unified 64-bit address space:
node id: 16-bit | offset: 48-bit ; each data block has a con-

stant home node, which is specified by the node id field. The
local cache is organized in cache blocks, which are the unit
of data transfer between the local cache and global memory.
A cache block is uniquely identified by its tag (e.g., the tag
of a 4KB cache block is the highest 52 bits of its address).
There are three components in a memory node: (i) application
threads execute application logic and access global memory
via linearizable write/read interfaces, which interact with the
local cache; (ii) the home agent manages part of the global
memory space within its node; (iii) the cache agent performs
invalidation and data transfers for data that is cached on its
memory node.
Switch. In addition to routing normal packets using standard
L2/L3 protocols, the switch is responsible for executing part
of the cache coherence protocol (e.g., serializing and multi-
casting requests) via the lock-check-forward (LCF) pipeline.
Shadow node. The shadow node helps migrate the owner-
ship of cache blocks between the switch and home agents by
recording coherence traffic of cache blocks.

As in other coherence protocols, each cache block may
be in one of three states, depending on how it is cached and
whether it is shared: Unshared (no node has it in the local
cache), Shared (some nodes share it with read permission),
and Modified (one node caches an exclusive copy with write
permission). This state is reflected in the cache block’s global
status. The copyset is the set of nodes that hold the corre-

USENIX Association 19th USENIX Conference on File and Storage Technologies 279

Node 1
C: <D1, dirty=0>

Time

write(C, D2)

C: <Shared, {1,2,3}>

C: <Modified, {1}>

Switch Node 2 Node 3

C: <invalid=1>
C: <invalid=1>

multicast

WRITE-SHARED(C)

WRITE-SHARED(C, Shared, {1,2,3})

ACK(WRITE-SHARED, C, Shared, {1,2,3})

WRITE-UNLOCK(C, Modified, {1})

ACK

Next write/read

C: <Shared, {1,2,3}>

C: <D2, dirty=1>

C: <D1, dirty=0> C: <D1, dirty=0>

Figure 4: An Example of FLOWCC. An application thread (i.e.,
requester) in node 1 writes cache block C with data D2.

sponding cache block. We denote the global status and copy-
set of a cache block as its global metadata. Owners manage
the coherence for a cache block, and store its global metadata.
Ownership (and global metadata) can be migrated between
the home node’s home agent and the switch, depending on
how actively the cache block is shared.

4.1 Key Ideas
1) Separating data and control planes. In CONCORDIA, the
switch only does what it is proficient at, i.e., routing packets
as the data plane; it multicasts cache coherence requests and
serializes conflicting ones via in-network locks (locking can
be regarded as controlling route paths of conflicting requests).
In contrast, servers, as control planes, perform state transi-
tions and send corresponding updates to the switch. Such a
separation simplifies the data plane design of the switch to
overcome its restricted expressive power (§5.1).
2) Unifying switch- and server-based coherence process-
ing. Due to the limited on-chip memory capacity of the
switch, CONCORDIA lets the switch only manage the coher-
ence of hot data, and resorts to servers for processing the cold
data. According to the coherence traffic that a cache block
induces, CONCORDIA dynamically migrates its ownership
between servers and the switch (§5.2).
3) Minimizing the number of modifications to switch
state. For every operation that modifies switch state, i.e.,
the values stored in the switch’s register arrays, we must deal
with the corresponding case of packet loss, at the cost of
consuming precious hardware resources of the switch and
complicating the system design. Thus, we strive to minimize
the number of switch state modifications. Specifically, in each
coherence event, i.e., the process of executing a cache coher-
ence request, the switch only modifies its state twice: À ac-
quiring locks; Á releasing locks and installing new metadata
of the targeted cache block. We make the two modifications
idempotent, to handle packet loss (§5.3).

4.2 Example
We illustrate the overall operation of FLOWCC protocol with
an example, as shown in Figure 4.

An application thread (i.e., requester) in node 1 issues a
write to cache block C, whose ownership is in the switch.
Since C is already cached by node 1 and is not dirty, the
requester generates a cache coherence request (i.e., WRITE-
SHARED) with the tag of C, and sends it to the switch (¶).

After receiving the request, the switch acquires the write
lock for cache block C, to prevent conflicting cache coherence
events (·). Then, it multicasts the request to cache agents in
node 2 and 3, according to the value of the copyset (¸). Of
note, the multicast requests contain the global metadata of C
(i.e., global status Shared and the copyset).

Upon receiving multicast requests, the cache agents in node
2 and 3 invalidate their local cache block copies by marking
them as invalid (¹). Then they send ACKs, which contain
the global metadata of cache block C, to the requester (º).

The requester waits for ACKs from the other cache agents
that are indicated in the copyset of ACKs (i.e., {2, 3}). Once
all ACKs are received, the requester installs new data into its
local cache and marks it as dirty (»). At this time, the cache
block C is in a coherent state in CONCORDIA. Finally, the
requester sends an asynchronous unlock request to the switch
(¼), to allow concurrent or subsequent coherence requests
targeting the same cache block to make progress. This unlock
request contains new global metadata of the cache block. The
switch releases the corresponding lock, and uses information
in the unlock request to install new global metadata (½).

Overall, this cache coherence request is processed in only
a single round-trip (compared with directory-based protocols,
note that unlock is asynchronous) with much less network
traffic (compared with snoop protocols, note that requests are
only multicast to memory nodes that hold data copies).

The example above can experience a host of undesirable
situations, for which we elaborate our solutions in §5. These
situations include: (i) the lock is occupied; (ii) the request is
invalid when entering the switch’s pipeline; (iii) the ownership
is not in the switch; (iv) a network packet is dropped.

5 CONCORDIA Design In Depth
In this section, we first describe FLOWCC protocol (§5.1).
Next, we detail how CONCORDIA migrates ownership (§5.2)
and handles packet loss (§5.3). Finally, we discuss practical
issues of CONCORDIA (§5.4).

5.1 FLOWCC Protocol
At the core of CONCORDIA is FLOWCC, a write-invalidate
protocol, which divides coherence responsibility between the
switch and servers. The switch serializes conflicting requests
and multicasts them to correct home/cache agents via the
lock-check-forward (LCF) pipeline. Servers perform state
transitions and update the switch data plane.

5.1.1 Protocol Details

In FLOWCC, a cache coherence event is handled collabora-
tively by switches and servers in the following four phases:

280 19th USENIX Conference on File and Storage Technologies USENIX Association

Field Meaning
type type of the cache coherence request
tag tag of the requested cache block
node id node id of the requester
global status global status of the requested cache block
copyset the set of nodes that hold the cache block
is data provider whether the receiver is the data provider
is in switch whether the switch manages the coherence

Table 1: Packet Format.

TAG
0x1b
0x23
0x67

…

LOCK

…

G_STATUS
Unshared
Modified
Shared

…

COPYSET
{}

{1}
{0, 1, 4}

…

packet in hit Check
Table

Forward
Table

get lock pass packets out

Figure 5: Lock-check-forward Pipeline. The three arrays in the
dashed box belong to the same stage; the orange lock is a read lock,
and the red one is a write lock. The switch just finished the lock
phase of two READ-MISS requests to the cache block with 0x1b tag.

ä Request Generation
Application threads (i.e., requesters) access global memory
by issuing write/read operations to the local cache, and gener-
ate cache coherence requests in case of cache miss and cache
eviction. Table 1 shows the packet format of requests. There
are five types of cache coherence requests (i.e., type field):
ÀÁ WRITE-MISS/READ-MISS for cache miss, ÂWRITE-
SHARED when issuing a write operation to a clean cache
block, ÃÄEVICT-MODIFIED/EVICT-SHARED when evicting
a dirty/clean cache block. The tag and node id fields iden-
tify the requested cache block and the node of the requester,
respectively. The last four fields are filled by the switch.
ä Lock-check-forward Pipeline
In the LCF pipeline, we store a reader-writer lock and global
metadata for each cache block. By leveraging this state, the
LCF pipeline serializes conflicting requests and multicasts
them to destinations.
On-chip state storage. Figure 5 shows the LCF pipeline,
which consists of four register arrays and two match-action
tables. The TAG array is a hash table that stores the tag of
cache blocks by using 64-bit slots. The LOCK array contains
16-bit reader-writer locks; for each lock, the most significant
bit indicates a writer, and the other 15 bits count the number
of readers (i.e., 215 concurrent readers at most). Lock and
unlock operations are supported by conditional update of
the register array. The G-STATUS array records the global
status of cache blocks with 8-bit slots. The COPYSET array
maintains cache block copysets by using a bitmap structure.
The last three register arrays are placed in the same stage, so
they can be manipulated together in an atomic manner (P1 in
§2.2). The check table verifies the validity of cache coherence
requests. The forward table routes requests to the correct
cache/home agents.
Request processing. The LCF pipeline processes a request in
three steps: (i) lock the requested cache block for concurrency
control. (ii) check the request’s validity. (iii) forward the
request to its final destinations.

When a request enters the LCF pipeline, the switch first

Match Key
pkt.type Action

READ-MISS check succ← pkt.node id < pkt.copyset
WRITE-MISS

WRITE-SHARED check succ← pkt.node id ∈ pkt.copyset
∧ pkt.global status == SharedEVICT-SHARED

EVICT-MODIFIED
check succ← pkt.node id ∈ pkt.copyset

∧ pkt.global status == Modified

Table 2: Check Table. If the check succ is true (i.e., the request is
valid), the switch passes the request to the forward table; otherwise,
the switch releases the lock and sends a failed ACK to the requester.

Match Key
(pkt.type, pkt.global status) Action

(READ-MISS, Unshared) forward to the request’s home
agent(WRITE-MISS, Unshared)

(READ-MISS, Modified) forward to the cache agent
in pkt.copyset(WRITE-MISS, Modified)

(READ-MISS, Shared)
select a cache agent in
pkt.copyset as the data
provider, and forward to it

(WRITE-MISS, Shared)
multicast to cache agents in
pkt.copyset, select a cache
agent as the data provider

(WRITE-SHARED, Shared)
multicast to cache agents in
pkt.copyset except pkt.node id 4

(EVICT-SHARED, Shared) return to the requester
(EVICT-MODIFIED, Modified)

Table 3: Forward Table. Requests multicast/forwarded to cache
agents (except for READ-MISS requests) indicate invalidation.

hashes the tag field of the request into an index number, and
then uses the index number to search the TAG array for the
tag (i.e., check if TAG [hash(tag)] equals tag). On failure, the
switch forwards the request to its home agent 3 and sets the
is in switch field to false. After finding the tag, the switch
tries to acquire the read lock if the request is READ-MISS;
otherwise, acquires the write lock. Note that we protect
EVICT-SHARED with write locks, since two concurrent EVICT-
SHARED requests to the same cache block may cause different
state transitions (detailed later, see Figure 6). In parallel, the
corresponding global metadata (i.e., values in G-STATUS and
COPYSET array) is filled into the request. The switch returns a
failed ACK to the requester when failing to acquire the lock.

Once the switch acquires the lock successfully, it passes
the request to the check table (shown in Table 2), to filter out
invalid requests caused by concurrent events. Let us consider
an example of invalid requests: immediately after a requester
issues a WRITE-SHARED request W for cache block A, the
cache agent in the same node invalidates A; it is possible
that, due to W being delayed by OS scheduler or network,
the global status of A is no longer Shared or the requester
no longer holds A when W enters the LCF pipeline. Thus, to
ensure that only valid requests are forwarded to destination
nodes, the switch checks the global status and copyset in the
request. If the check fails, the switch resubmits the request
to release the acquired lock, and then sends a failed ACK to
the requester. Compared with server-based mechanisms, such

3For simplicity, we denote the home agent of a request or a cache block
as the home agent that resides in the requested cache block’s home node.

4If copyset only contains the requester, the switch returns an ACK.

USENIX Association 19th USENIX Conference on File and Storage Technologies 281

Unshared Shared

ModifiedWRITE_MISS

READ_MISS
WRITE_MISS/
WRITE_SHARED

READ_MISS/EVICT_SHARED

WRITE_MISS

READ_MISSEVICT_MODIFIED

EVICT_SHARED

Figure 6: State Transitions of Global Status. Requesters generate
global status according to this diagram, and piggyback it on unlock
requests. When evicting a clean cache block (i.e., EVICT-SHARED),
the global status changes from Shared to Unshared if the copyset is
empty; otherwise, the global status remains unchanged.

an in-network check reduces the load of servers (checking
validity of requests and sending failed ACKs).

If the request passes the check table successfully, the for-
ward table (see Table 3) sends it to its final destinations ac-
cording to the (type, global status) pair. Specifically, there are
three cases: (i) If no copy of the requested cache block exists,
i.e., global status is Unshared, the switch routes the request
to its home agent for fetching data in global memory. (ii) If
cache block copies need to be invalidated, the switch multi-
casts the request to the cache agents in the copyset. (iii) For an
eviction request, the switch returns it to the requester directly,
since the corresponding lock has been acquired.

To support efficient cache-to-cache data transfer, we adopt
an in-network selection mechanism. For READ-MISS/WRITE-
MISS requests, if shared nodes exist (i.e., copyset is not
empty), the switch selects a cache block data provider among
them using a load balancing strategy and sets is data provider
field in the corresponding request. The current load balancing
strategy is to randomly choose a data provider from shared
nodes; compared with other complex strategies, the random
selection does not consume any precious on-chip memory.

ä Invalidation and Data Transfer

Cache agent. Upon receiving the request, the cache agent in-
validates corresponding cache block for WRITE-MISS/WRITE-
SHARED. Then, the cache agent sends an ACK to the re-
quester. If the cache agent is a data provider, it also transfers
cache block data.
Home agent. Upon receiving a request, if is in switch field
is true, the home agent replies to the requester with an ACK,
which contains the corresponding cache block data from
global memory. The remaining cases, i.e., the switch does not
own the ownership of the requested cache block, are discussed
in §5.2.

Note that all ACKs from cache/home agents carry the
global metadata of the requested cache block, so as to help
requesters reach coherence.

ä Requester-driven Coherence Control

The requester waits for ACKs from home/cache agents, and
then performs state transitions and updates the switch data
plane. Specifically, upon receiving a failed ACK, the requester
retries the read/write operation. Otherwise, the requester

waits for all ACKs needed for reaching coherence. Then, for
READ-MISS/WRITE-MISS, the requester installs cache block
data; for EVICT-MODIFIED, it writes back the cache block
data to the home node. After that, the requester generates
new global metadata (i.e., copyset and global status): the
new copyset is (i) {id} for WRITE-MISS/WRITE-SHARED
or (ii) csold + {id} for READ-MISS or (iii) csold −{id} for
eviction requests, where csold is the copyset in the ACKs
and id is the node id of the requester. The new global status
is generated according to the state transitions diagram in
Figure 6. Finally, the requester sends an unlock request to the
switch, with the new global metadata. The unlock request is
asynchronous, enabling the requester to execute subsequent
read/write operations immediately.

On receiving an unlock request, the switch releases the
lock (i.e., modifies the LOCK array), and updates the global
metadata (i.e., values in G-STATUS and COPYSET arrays). For
read lock release, the new value in the COPYSET array is the
union of the old one and the copyset field in the unlock request,
considering maybe there are concurrent READ-MISS requests.
Atomicity property (P1 in §2.2) guarantees the atomicity of
update to these three arrays, since they are in the same stage.

5.1.2 Correctness

FLOWCC is based on the state transitions of classic MSI
protocols. Compared with directory-based MSI protocols,
it has two main changes: À leveraging in-switch locks to
serialize conflicting requests; Á leveraging the switch to
multicast invalidation messages. Here, we prove FLOWCC is
correct by proving the following two invariants are correct [27,
50]. We assume all messages are reliable (§5.3 describes how
CONCORDIA handles packet loss).
INVARIANT 1. Exactly one writer can update a memory
location at a time (Single-Writer-Multiple-Readers Invariant).
PROOF. Before getting the write permission of a cache block,
a thread must acquire the in-switch write lock and revoke the
write/read permission of other servers via invalidation; thus,
only one thread can write a cache block at any time.
INVARIANT 2. If a cache block is valid, it must hold the
most recent value updated by writers (Data-Value Invariant).
PROOF. On write requests, the switch invalidates all the
copies by multicasting messages and only the requester owns
the most recent data at the end; on read requests, the most
recent data is populated into the requester’s local cache. Thus,
any operations manipulate the latest data.

5.2 Ownership Migration
To overcome limited on-chip memory capacity in the switch,
CONCORDIA explicitly limits the number of cache blocks
that the switch manages coherence for, using an ownership
migration mechanism. Specifically, CONCORDIA migrates
ownership between home agents and the switch dynamically:
if a cache block has heavy coherence traffic, its home agent
migrates its ownership to the switch. Similarly, if a cache

282 19th USENIX Conference on File and Storage Technologies USENIX Association

block only induces light coherence traffic, its ownership is
migrated in the opposite direction.

Home agents handle cache coherence requests for cache
blocks they manage (the is in switch field in these requests
is false). Specifically, home agents process cache coherence
requests in the same way as the LCF pipeline of the switch:
they store global metadata for multicast and use reader-writer
locks to serialize conflicting requests.

5.2.1 Migration Requests

We design two type of requests for ownership migration.
• ADD-TO-SWITCH. When a home agent needs to migrate

the ownership of a cache block to the switch, it acquires
the write lock for the cache block (to prevent conflicting re-
quests), and then sends an ADD-TO-SWITCH request to the
switch. The request consists of the cache block’s tag, global
status and copyset. The switch inserts these three values into
TAG , G-STATUS , and COPYSET array, respectively. Ordering
property P2 (in §2.2) ensures other requests will see all the
updates or none. The home agent releases the lock after re-
ceiving an ACK from the switch.
• REMOVE-FROM-SWITCH. When a home agent is in-

formed by the shadow node to migrate the ownership of a
cache block from the switch to itself (see §5.2.2), it sends a
REMOVE-FROM-SWITCH request to the switch with the tag
of the cache block. Upon receiving the request, the switch
acquires the cache block’s write lock in the LOCK array. On
success, the switch resubmits the request. When receiving the
resubmitted request, the switch clears the tag in the TAG array;
then, it releases the lock and sends an ACK with up-to-date
global status and copyset (i.e., global metadata) to the home
agent. The home agent stores these two values locally.

5.2.2 Migration Workflow

Figure 7 shows the ownership migration of a cache block.
Home agents ß Switch. Home agents identify hot cache
blocks managed by themselves and migrate their ownership
to the switch. We divide time into continuous epochs (e.g.,
10ms), and each home agent records the hotness of cache
blocks in the current epoch. If a cache coherence request
needs to be multicast to n cache agents, the hotness of corre-
sponding cache block is incremented by n. At the end of an
epoch, the home agent migrates the top-k (e.g., 1000) hottest
cache blocks to the switch by issuing ADD-TO-SWITCH.
Switch ß Home agents. We introduce a shadow node to col-
lect hotness statistics for cache blocks managed by the switch.
The shadow node duplicates the switch’s TAG array into its
in-memory array called SHADOW-TAG . Cache agents record
the number of invalidations for cache blocks managed by the
switch, and report their statistics to the shadow node at the
end of each epoch. The shadow node applies these statistics
to SHADOW-TAG . The shadow node scans the SHADOW-TAG
array periodically to remove the coldest cache blocks by in-
forming home agents to issue REMOVE-FROM-SWITCH for

In Home AgentIn Switch
ADD-TO-SWITCH

REMOVE-FROM-SWITCH

Home agenthotness += n

Cache agent

Cache agent

INV 1

hotness += m

Shadow node
report statisticsINV m

INV 1

INV n

Figure 7: Ownership Migration of a Cache Block. INV means
invalidation messages; the migration is performed by home agents.

these cache blocks.
Handling collisions. Since the switch manages the TAG ar-
ray as a hash table (recall §5.1.1), the candidate locations
of an ADD-TO-SWITCH operation may be occupied by other
cache blocks (i.e., hash collisions). In such a case, the switch
returns a failed ACK to the home agent that issues the ADD-
TO-SWITCH; the home agent will retry the ADD-TO-SWITCH
at the next epoch (if the corresponding cache block is still hot).
The switch copies the ACK of every ADD-TO-SWITCH to the
shadow node: if the ACK indicates success, the shadow node
adds the corresponding tag into the SHADOW-TAG ; otherwise,
it removes the coldest cache block in the conflicting locations.
By leveraging the centralized shadow node to handle colli-
sions, CONCORDIA can ensure that though each home agent
independently chooses its hottest cache blocks, the switch
can manage the globally hottest cache blocks.

5.3 Packet Loss Handling
In the FLOWCC protocol, the switch is stateful due to storing
locks and global metadata; thus, traditional end-to-end mech-
anisms, e.g., TCP retransmission, can not handle packet loss
correctly. We make operations both in servers and the switch
idempotent, to address this problem5.

5.3.1 Server Idempotence
We use sequence numbers to guarantee idempotence of server
operations [40]. Each requester assigns a unique requester-
local sequence number for a cache coherence event; all re-
quests (i.e., cache coherence requests and unlock requests)
in the cache coherence event contain the sequence number.
Sequence numbers are allocated in increasing integer order.
On suspecting a lost request via timeout, the requester retrans-
mits it. We set the timeout value of cache coherence requests
to 6 RTTs (round-trip times) and unlock requests to 3 RTTs.

Each home/cache agent maintains a LAST-EXECUTED table,
which records the largest sequence number ever received from
each requester. When a home/cache agent receives a cache
coherence request, it compares the request’s sequence number
with the corresponding value in the LAST-EXECUTED table. If
the request’s sequence number is larger, the home/cache agent
executes the request, updates the LAST-EXECUTED table, and
responds. If the request’s sequence number is lower, the
request is ignored. If the two are the same, the home/cache
agent sends an ACK without modifying any state.

5For space reasons, in this subsection (§5.3), we only present how to
handle packet loss in the FLOWCC protocol. We use the same mechanism
for the ownership migration.

USENIX Association 19th USENIX Conference on File and Storage Technologies 283

LK
0:1

…

SB

0
…

LK
0:2

…

SB

1
…

<READ-MISS, seq: 9>

packet loss

LK
0:3

…

SB

2
…forward

(a) (b) (c)

<READ-MISS, seq: 9>

LU

8

LK
0:3

…

SB

2

<READ-UNLOCK, seq: 9>

lock score: 2

0:1
0

(d)
9

Figure 8: Idempotent Lock/Unlock Operations. The boxes on the
top show packets with only the relevant details (seq: sequence num-
ber). LK is the LOCK array, and SB is the SCOREBOARD array, and
LU is the LAST-UNLOCK array. Each 16-bit reader-writer lock in
LOCK has the form x:y, where x is most significant bit marking the
writer and y is the other 15 bits counting the number of readers. (a)
Initialization state. (b) A requester issues a READ-MISS. The switch
acquires the read lock by increasing the reader counter, and then
increases the requester’s lock score. Unfortunately, the READ-MISS

is dropped after leaving the switch pipeline. (c) Upon timeout, the
requester re-sends the READ-MISS with the same sequence num-
ber. After updating the LOCK and SCOREBOARD arrays, since the
lock score is more than 0, the switch thinks the lock is acquired
successfully. (d) The switch handles an unlock request.

5.3.2 Switch Idempotence

Since modifications to the TAG , G-STATUS , and COPYSET ar-
rays in the switch are already idempotent, we only need to
make lock and unlock operations idempotent. We introduce
a SCOREBOARD array and a LAST-UNLOCK array to solve this
problem, at the cost of slight on-chip memory usage.

The SCOREBOARD array is in the LCF pipeline and is placed
before the check table to make lock operations idempotent.
For each requester, it records a lock score, which refers to
the number of successful lock acquisitions. When the switch
processes a cache coherence request and manages to acquire
the lock, the requester’s lock score is incremented. The switch
passes the request to the subsequent check table only if the
lock score is greater than 0. For read lock operations, the lock
score may be greater than 1 due to retransmitted requests;
Figures 8(a)-(c) show an example of such a case.

The LAST-UNLOCK array is placed before the LCF pipeline
to make unlock operations idempotent. For each requester,
it records the largest sequence number of executed unlock
requests, to avoid repeated execution of the same unlock re-
quest. When receiving an unlock request, the switch reads
the requester’s lock score (¶ in Figure 8(d)), and then re-
submits the request with the lock score (·). If the sequence
number in the resubmitted request is larger than the value
in the LAST-UNLOCK , the switch updates the LAST-UNLOCK
array (¸) and executes the unlock operation (¹). For a read
unlock operation, the switch subtracts lock score from the
reader counter field of the reader-writer lock. Finally, the
requester’s value in the SCOREBOARD is reset (º).

Using only one lock score for a requester disables asyn-
chronous unlock requests, since we cannot allow requests
in two cache coherence events to manipulate the same lock
score concurrently. Thus, to enable asynchronous unlock
requests, each requester is associated with two lock scores
in SCOREBOARD array: one for requests with odd sequence

numbers, the other for even ones. Before issuing an unlock
request, a requester must ensure that it has received the ACK
of the unlock request in the last cache coherence event.

5.4 Practical Issues
Scalability. We focus on rack-scale DSMs in this paper,
following the growing tread towards rack-scale computers,
which have the potential as building blocks for datacenters
(e.g., Microsoft Rack-scale computers [9], Facebook Open-
Rack [3], Intel RSD [7]). By packing many servers into
the same rack, a rack-scale computer can provide extremely
high network bandwidth and low communication latency, to
efficiently support various data-intensive applications (e.g.,
parameter servers [48]). CONCORDIA abstracts a rack into
one giant machine with massive cache-coherent shared mem-
ory, easing the programming on rack-scale computers.

Within a rack, CONCORDIA is capable of scaling well. In
our FLOWCC protocol, the most difficult tasks to scale (i.e.,
concurrency control and multicast) are offloaded to the switch;
during a cache coherence event, involved home/cache agents
only process constant-time tasks (independent of cluster size).
The switch can process several billion packets per second,
which is enough to handle coherence traffic within a rack.

If CONCORDIA spans multiple racks, each ToR switch will
execute the LCF pipeline for home nodes that reside in its
rack. Yet, there are several challenges that we must address.
À It is impractical to use a bitmap to encode the copyset
as we do now, considering the number of servers in large-
scale clusters; we need to design a more compact copyset
format like coarse vectors [31]. Á To avoid cache invalidation
storms in a large scale, a weaker memory consistency level
(e.g., acquire-release consistency [61]) may be needed. A full
exploration is our future work.
Crash safety. We handle failures of different components.
• Switch. If a switch fails, operators can replace it with a
backup switch [34], but lost global metadata needs to be re-
stored. Here, we mark the set of cache blocks managed by
the crashed switch as S. After all application threads abort
their ongoing write/read operations, the system enters into
a recovery process: À Every cache agent gathers the local
states (i.e., dirty bit) of cache blocks that are in both S and
its cache, and then sends them to corresponding home agents.
Á By analyzing replies, home agents reconstruct the global
metadata of S; now, the ownership of S is transferred to home
agents safely. Â Finally, the shadow node clears its SHADOW–
TAG . Leveraging the information stored in the shadow node
may accelerate recovery, and we leave it for future work.
• Memory nodes. We rely on applications atop CONCORDIA
to mask failures of memory nodes, instead of implementing
an internal fault-tolerance mechanism. Take the three applica-
tions in our evaluation (§7) as examples: (i) In-memory key–
value stores are typically used to cache frequently accessed
data of back-end databases [52]. Hence, we recover lost data
from back-end databases. (ii) Transaction processing systems

284 19th USENIX Conference on File and Storage Technologies USENIX Association

can record transaction logs to remote servers [36, 63], to tol-
erate failures of memory nodes. (iii) For a graph computation
engine, the most common way to achieve fault-tolerance is
checkpointing [29, 51].

When a memory node fails but does not release locks, con-
flicting requests from other nodes cannot proceed. We adopt
a conservative “stop-the-world” mechanism to address this
problem: once notified that there is a failed memory node,
all application threads in CONCORDIA drain their ongoing
write/read operations, then halt. Next, all the locks in CON-
CORDIA are released safely. After that, the system continues
to run. Using more flexible mechanisms, e.g., leasing [30],
will consume extra on-chip memory and complicate the de-
sign of the switch data plane; we leave it as our future work.
• Shadow node. When the serving shadow node crashes, we
designate a new shadow node among backups with the help
of ZooKeeper [32]. The new shadow node reconstructs the
SHADOW-TAG by reading the TAG array of the switch.

6 Implementation
We implement a prototype of CONCORDIA in approximately
7600 lines of C++ and 1500 lines of P4 [17]. Like Tread-
Marks [15] and GAM [20], CONCORDIA is a user-space DSM
system. Applications are linked to the CONCORDIA library
and call the read/write interface. In each memory node, the
cache agent and home agent run on two different background
threads by default, but it is easy to scale up them.
Network. We use RoCE (RDMA over Converged Ether-
net) to enable high-performance network communication.
All the cache block data is sent via RDMA WRITE verbs
over Reliable Connected (RC) mode to avoid data copying.
Other packets (e.g., cache coherence requests) use RDMA
Raw Packets [10]; we fill a UDP header and use a reserved
source port for these packets. The switch executes FLOWCC
for these packets, and sets the UDP destination port to the
queue pair number (qpn) of the targeted queue pair. Each
Raw Packet queue pair registers a steering rule to intercept
the packets received by the NIC whose source port equals
reserved port and destination port equals its qpn.
Cache. The cache in each memory node is organized into a
bucket-based hash table. When looking up a cache block, we
hash its tag into a bucket, which contains a certain number
of entries (e.g., 8). Each entry records a cache block’s local
metadata, including dirty bit, tag, timestamp and a pointer
to the cache block data. We record the current time into the
timestamp field when accessing a cache block, and employ an
LRU policy for cache eviction. By default, the cache block
size is 4KB, which achieves a good balance between network
bandwidth and latency in the high-speed RDMA environment.
Switch data plane. The switch data plane is written in P4
and is compiled to Barefoot Tofino ASIC [2]. The COPYSET
array is comprised of 32-bit slots, since our ToR switch owns
32 ports. We use one ingress pipeline to process the cache
coherence traffic by realizing our LCF pipeline. Since the

memory resources in a single stage of the ingress pipeline
are limited, we scatter the values of TAG , LOCK , G-STATUS ,
and COPYSET arrays across 10 stages, forming set-associative
structures. Thus, a cache block has multiple candidate loca-
tions in different stages: if the hash value of its tag is k, its tag
and global metadata can be stored in the kth items of arrays
in any stage. Our current implementation can manage 375K
cache blocks (i.e., about 1.5GB cache data) in the switch,
consuming about 6MB on-chip memory.
Synchronization primitive. We expose per-cache-block
reader-writer locks in the FLOWCC protocol as a synchro-
nization primitive (i.e., rwlock) to applications.
Global memory allocation. We use a two-level approach to
allocate global memory for applications [60]. Application
threads select a memory node and send allocation requests
to its home agent. The home agent returns a huge free chunk
(i.e., 32MB). Then application threads perform allocation
locally in a fine-grained way, to reduce remote access.

7 Evaluation
This section presents the performance evaluation of CONCOR-
DIA with a set of micro benchmarks and three applications.
All experiments are conducted on a cluster of 8 machines,
each with two 12-core Intel Xeon E5-2650 v4 2.20GHz CPUs,
128GB DRAM, and one 100Gbps Mellanox ConnectX-5 net-
work adapter. A 3.3Tbps Barefoot Tofino switch (32 ports)
connects all of the machines. All machines run the CentOS
7.4.1708 distribution and the 3.10.0 Linux kernel.

7.1 Systems in Comparison
We compare CONCORDIA with two state-of-the-art DSMs:
Grappa. Grappa [6, 51] is a DSM without a cache for data-
intensive applications. Instead of fetching data to computa-
tion, Grappa ships computation to data via delegate operations.
Message transmission in Grappa is done purely in user-mode
using MPI, which in turn uses RDMA verbs.
GAM. GAM [5, 20] is a recent DSM that implements a
directory-based cache coherence protocol over RDMA. In
addition to application threads, GAM uses two background
threads to handle cache coherence events by default. We
disable GAM’s logging scheme for a fair comparison.

7.2 Micro Benchmarks
In micro benchmarks, we launch a four-thread process in each
memory node to generate mixed read-write workloads. Each
operation in workloads accesses an 8-byte object in the global
memory, which is the same as in GAM [20]. The working
set of these micro benchmarks is 8GB, and the cache size
is 1GB. The access pattern of the workloads is controlled
via three parameters: read ratio, data locality, and sharing
ratio. The read ratio is the percentage of read operations. The
data locality is the probability of an operation accessing the
same cache block as the previous one. The sharing ratio is
the percentage of operations that access data shared across
all nodes, and the shared data is about 250MB. We run all

USENIX Association 19th USENIX Conference on File and Storage Technologies 285

Grappa
GAM

Concordia-base
Concordia

Th
ro

ug
hp

ut
 [M

op
/s

]
0

4

8

12

Sharing Ratio (%)
0 20 40 60 80 100

Figure 9: Performance Impact of Sharing Ratio.
Concordia-base Concordia

0

50

100

150

of

 P
ac

ke
ts

 (m
illi

on
)

Sharing Ratio (%)

(a) Receive (b) Send

Sharing Ratio (%)
0

50

100

150

0 50 100 0 50 100

Figure 10: Communication Reduction from LCF Pipeline. The
figure shows the number of packets received/sent by home agents.

the micro benchmarks on 8 nodes. By default, the read ratio
is 50% and the data locality is 0%. The baseline version
of CONCORDIA (i.e., CONCORDIA-base), in which servers
manage ownership of all cache blocks, is also evaluated.

7.2.1 Sharing Ratio

Figure 9 presents the results with various sharing ratio. Be-
cause the operations are very small (i.e., 8 bytes read/write),
which induces too many remote delegation operations and
worker scheduling events in Grappa, Grappa’s throughput is
far lower than other systems.

When the sharing ratio is 0%, i.e., no cache coherence
traffic, GAM has higher throughput than CONCORDIA and
CONCORDIA-base. This is because the cache in GAM is a
fully associative mapping structure, which causes fewer cache
block evictions than the set-associative cache of CONCORDIA.

As the sharing ratio becomes higher, the introduced cache
coherence traffic becomes severe, which causes performance
degradation of all the DSMs. The throughput of GAM is
reduced by 17× when the sharing ratio increases from 0%
to 100%. However, CONCORDIA-base’s throughput is only
reduced by 3.8× even with considerable coherence traffic
(i.e., 100% sharing ratio), and it outperforms GAM by 1.25×
to 3.5× when shared data access exists. The reason is that
CONCORDIA-base offloads home node tasks such as invalida-
tion aggregation to the requesters, thus reducing the load on
home nodes. CONCORDIA outperforms CONCORDIA-base
by 1.3× to 1.48× when sharing ratio is larger than 20%. This
is mainly because our in-network protocol takes home nodes
off the critical path of cache coherence as well as reduces
network hops and coordination, leveraging the extremely high
processing power of the switch.

To quantitatively understand the effect of the LCF pipeline,
we collect the number of packets sent and received by all
home agents in CONCORDIA and CONCORDIA-base, as
shown in Figure 10. When the sharing ratio grows, the num-
ber of packets sent and received by CONCORDIA-base’s home
agents increases dramatically due to increased coherence traf-
fic. However, owing to the help of the LCF pipeline, home

Grappa
GAM

Concordia-base
Concordia

Th
ro

ug
hp

ut
 [M

op
/s

]

 Read Ratio (%) Read Ratio (%)

(a) 20% Sharing Ratio (b) 60% Sharing Ratio

0
4
8

12
16

0 50 100 0 50 100

Figure 11: Performance Impact of Read Ratio.

agents in CONCORDIA send and receive a steady number
of packets, regardless of the sharing ratio. Such a result in-
dicates that the LCF pipeline effectively mitigates load for
home agents and reduces coordination between servers, which
ensures CONCORDIA’s performance gain over CONCORDIA-
base. Of note, though CONCORDIA reduces transferred pack-
ets significantly (up to 4.8×), it improves throughput by up
to 1.48× (Figure 9). This is because part of the accesses are
served by the local cache (39% in case of 100% sharing ratio)
and do not incur coherence traffic; these local accesses cannot
benefit from the LCF pipeline.

7.2.2 Read Ratio

This experiment studies how the read ratio affects the perfor-
mance. Figure 11 shows the results. When the read ratio is
lower than 50%, the throughput of these four DSMs is stable
regardless of read ratio, since the performance of systems
except Grappa is bottlenecked by coherence traffic. CONCOR-
DIA outperforms CONCORDIA-base by 1.22× and GAM by
3.5× to 3.9× in case of light data sharing (i.e., 20% sharing
ratio) and outperforms CONCORDIA-base by 1.48× to 1.5×
and GAM by 4.5× to 5.1× in case of heavy data sharing (i.e.,
60% sharing ratio). CONCORDIA performs better because the
FLOWCC protocol accelerates coherence processing.

The throughput of GAM, CONCORDIA-base, and CON-
CORDIA grows as the read ratio increases from 50% to 100%,
since the coherence traffic becomes light. More specifically,
À GAM outperforms CONCORDIA in case of 100% read ratio
and 20% sharing ratio. This is because no coherence traffic ex-
ists and GAM triggers fewer cache eviction events than CON-
CORDIA. Á With 100% read ratio and 60% sharing ratio, the
throughputs of GAM and CONCORDIA/CONCORDIA-base
are 16Mops and 60Mops, respectively, which we do not plot
in the figure to avoid obscuring other results. This is because
(i) there is almost no cache eviction, and (ii) CONCORDIA’s
cache structure is optimized for fast access, but GAM needs
to acquire/release four locks and maintain LRU lists when
accessing a cache block, which severely stalls CPU pipeline
even without data race.

7.2.3 Data Locality

Figure 12 investigates how data locality affects the throughput
of these systems. With higher data locality, the performance
of CONCORDIA and GAM improves substantially as a result
of the cache. On the contrary, since Grappa does not use a
cache, it can not benefit from the locality. We do not plot
results when the locality is 100% because the corresponding

286 19th USENIX Conference on File and Storage Technologies USENIX Association

0

20

40

Th
ro

ug
hp

ut
 [M

op
/s

]

 Locality (%) Locality (%)

Grappa
GAM

Concordia-base
Concordia

(a) 20% Sharing Ratio (b) 60% Sharing Ratio

0
20
40
60

0 50 100 0 50 100

Figure 12: Performance Impact of Data Locality.

Th
ro

ug
hp

ut
[M

op
/s

] stop &
reactivate switch switch is up

0
2
4
6

Time (s)
0 10 20 30 40 50 60

Figure 13: Switch Failure Handling.

values are too high: 23Mops for GAM and 133Mops for
CONCORDIA and CONCORDIA-base, which would obscure
other results. This is because CONCORDIA’s cache structure
is much faster, as stated in §7.2.2.

7.2.4 Switch Failure Handling

Here, we evaluate how CONCORDIA handles a switch fail-
ure. We set the sharing ratio to 60%. Figure 13 shows the
total throughput over time. At time 20 s, we stop the switch
by killing its daemon process, and then reactivate it; since
the switch cannot route packets, the throughput immediately
drops to 0. After initialization of the switch ASIC and drivers
(about 16 seconds), the switch is up and can route packets.
Then, CONCORDIA recovers the global metadata of cache
blocks managed by the previous switch instance, consuming
about 1.9 seconds; after this step, CONCORDIA can continue
to run its workloads. Finally, CONCORDIA migrates the own-
ership of shared cache blocks to the switch (1.5 seconds), and
the throughput reaches a stable peak.

7.3 Distributed Key-Value Store
We build a distributed key-value store atop CONCORDIA,
which is implemented by a distributed array of buckets across
nodes. A key is hashed to a bucket, and then PUT/GET opera-
tions are translated into a series of DSM calls (i.e., write, read,
lock and unlock). GAM has a similar version of key-value
store implementation. For Grappa, each thread maintains part
of the key-value store and handles delegation requests.

We run skewed workloads using a non-uniform key popu-
larity that follows a Zipf distribution of skewness 0.99, which
is the same as YCSB’s [22]. The keyspace size is 64 million,
and we use fixed 8-byte keys and 128-byte values. 95% GET

workloads are read-intensive, and 50% GET workloads are
write-intensive. Each node launches a four-thread process to
generate workloads. The cache size is 2GB. Figure 14 shows
the results with varied node counts.

For read-intensive workloads, when there are more than 2
nodes, CONCORDIA outperforms Grappa by 3.9× to 5× and
GAM by 1.2× to 2.5×. Grappa has the lowest performance
among the three systems, because each PUT/GET operation
needs remote delegation and the nodes serving the most popu-

Th
ro

ug
hp

ut
 [M

op
/s

]

0

0.5

1.0

1.5

 # of Node # of Node

Grappa GAM Concordia
(a) 95% GET (b) 50% GET

0

1

2

3

2 4 6 8 2 4 6 8

Figure 14: Throughput of Key-Value Store.

Th
ro

ug
hp

ut
 [K

 tp
s]

0

0.2

0.4

 Distribution Ratio (%) Distribution Ratio (%)

GAM Concordia

Ab
or

t R
at

e(a) Throughout (b) Abort Rate

0

100

200

0 50 100 0 50 100

Figure 15: Performance of TPC-C Benchmark.

lar objects suffer from hot spots in the presence of skew. The
cache absorbs many GET operations, and thus the throughputs
of GAM and CONCORDIA are higher than that of Grappa. The
workload with 5% PUT operations causes a small amount of
cache coherence traffic in CONCORDIA and GAM. However,
GAM is more vulnerable to coherence traffic than CONCOR-
DIA, due to its traditional directory-based protocol design,
and its throughput plateaus or even decreases somewhat when
the node count becomes larger. In contrast, CONCORDIA can
benefit from the cache, while minimizing coherence overhead
with the help of FLOWCC protocol.

For write-intensive workloads, CONCORDIA outperforms
GAM by 1.2× to 4.2× and Grappa by 2.3× to 2.6×. GAM’s
total throughput drops and is lower than Grappa’s when
adding more nodes because of heavy coherence overhead.
The ownership migration in CONCORDIA lets the switch man-
age coherence traffic of the hottest cache blocks in skewed
workloads, which guarantees CONCORDIA’s scalability.

7.4 Transaction Processing
We port the transaction engine of GAM into CONCORDIA;
this engine implements two-phase locking for concurrency
control and non-waiting scheme for deadlock prevention. In
this experiment, we use TPC-C [11] to compare the perfor-
mance of CONCORDIA against GAM. All tables and indices
are uniformly distributed in the global memory, following
the growing trend towards shared-everything architectures
[64, 66]. We launch 4 threads in each node, and each thread
holds a TPC-C warehouse (i.e., 32 warehouses in total). Each
thread accesses other warehouses with a probability called
the distribution ratio. The cache size is 2GB.

Figure 15(a) shows the throughput of the TPC-C bench-
mark. Both systems have almost the same throughput when
there is no data sharing. However, CONCORDIA outperforms
GAM by 1.55× to 2× when different threads access the same
warehouses. This is because CONCORDIA’s FLOWCC proto-
col is faster than GAM’s, causing lower transaction execution
time and further reducing transaction aborts due to contention.
Figure 15(b) plots the transaction abort ratio. The abort ratio
of the two systems increases when the distribution ratio gets

USENIX Association 19th USENIX Conference on File and Storage Technologies 287

0

200

400(a) LiveJournal

PowerGraph Grappa Concordia
R

un
 T

im
e

(s
ec

on
ds

)

(b) Twitter

0

20

40

4 Nodes 8 Nodes 4 Nodes 8 Nodes
Figure 16: PageRank Total Run Time.

higher, but CONCORDIA has a much lower abort ratio.

7.5 Distributed Graph Computing
We build a distributed graph processing engine on CONCOR-
DIA. Similar to PowerGraph [29], we store graphs using a
vertex-centric representation with random graph partitioning.
For a graph algorithm, each thread executes the gather, apply
and scatter phases on a set of vertices.

We compare CONCORDIA’s graph engine with Grappa
and PowerGraph using two real datasets: LiveJournal (4M
vertices, 34.7M directed edges) [8] and the latest Twitter
graph (61M vertices, 14B directed edges) [12, 39] . We run
PageRank [54] with CONCORDIA, PowerGraph, and Grappa
under 4 and 8 node settings, and each node launches 4 threads.
We use PowerGraph’s default threshold criteria, which results
in the same number of iterations for all systems.

Figure 16 shows the total PageRank run time. CONCORDIA
outperforms Grappa by 1.3× to 2.3× and PowerGraph by
1.8× to 4.4×. This is because, CONCORDIA’s network stack
takes full advantage of RDMA performance, using WRITE
verbs without any data copying. In addition, CONCORDIA’s
cache mechanism minimizes the amount of data transferred
across the network.

8 Related Work
Distributed Shared Memory. In the past few decades,
many DSMs and cache coherence approaches have been pro-
posed [15, 16, 21, 44, 58, 62]. IVY [44] provides sequential
consistency at the cost of frequent cache invalidations. Other
systems [15,21,58] relax the consistency model or avoid false
sharing to reduce communication overheads. CONCORDIA
provides strong consistency to ease the programming, while
minimizing coherence overheads.

As recent RDMA technology makes the latency and
throughput of the network approach that of memory, new
DSMs have emerged [20, 25, 47, 51, 61]. FaRM [25, 26, 59]
offers general distributed transactions to global shared mem-
ory. Octopus [47] redesigns a distributed file system over a
shared persistent memory pool. Hotpot [61] leverages non-
volatile memory to incorporate both distributed memory and
distributed storage. Different from the above systems, CON-
CORDIA focuses on cache coherence and accelerates it by
exploiting new programmable network hardware.
In-Network Computation. Emerging network hardware
like programmable switches poses new opportunities for
in-network computation [49, 55]. NetCache [34] and Dist-
Cache [46] propose in-switch caches for load balancing.
NetChain [33] designs a replicated, in-switch key-value store

for distributed coordination. IncBricks [45] supports caching
in the network using a programmable network middlebox.
These in-network caching or key-value store systems need to
keep data in the network hardware and servers coherent. They
adopt similar server-based mechanisms to solve this prob-
lem. For example, in IncBricks, servers record the sharers
list and issue invalidation commands to network accelerators
when clients send SET or DELETE requests. In contrast, CON-
CORDIA exploits the programmable network to coordinate
coherence among the cache of servers and only stores the
cache’s metadata in the switch.

The most similar work to ours is Pegasus [43]. Pegasus
replicates the most popular objects to distribute load and lever-
ages switches to track servers that store replicated objects.
When a client issues a read request, the switch routes the
request to a replica by a load-aware scheduling policy. When
a client issues a write request, the switch resets the replica set
to include only one server by a version-based mechanism. Pe-
gasus’s protocol is specialized and simplified for client-server
model systems. In contrast, our FLOWCC protocol is de-
signed for the general cache coherence problem in symmetric
model systems (i.e., DSMs), with complex state transitions
and concurrency control. In addition, CONCORDIA is a DSM
but Pegasus is an object store.

9 Conclusion
We present CONCORDIA, a rack-scale DSM with in-network
cache coherence; it divides coherence responsibility between
switches and servers to reduce coherence overhead within
the functionality and resource limit of switches. Specifi-
cally, CONCORDIA incorporates (i) a protocol that leverages
switches to serialize and multicast requests, (ii) a mechanism
that moves the ownership of cache blocks between switches
and servers dynamically, and (iii) a method that makes opera-
tions in both servers and switches idempotent. CONCORDIA
significantly outperforms existing solutions.

We believe that our in-network coherence protocol can also
benefit other systems such as distributed file systems and hard-
ware memory disaggregation. As storage hardware becomes
extremely fast (e.g., non-volatile memory), new distributed
file systems need microsecond-scale coherence for metadata
caching, which can be provided by our in-network coherence
protocol. Our in-network coherence protocol can also enable
compute node caching for shared data in hardware disaggre-
gated memory architectures; such caching is indispensable
for reducing network accesses.

10 Acknowledgements
We sincerely thank our shepherd Kimberly Keeton for helping
us improve the paper. We also thank the anonymous review-
ers for their feedback. This work is supported by the National
Key Research & Development Program of China (Grant No.
2018YFB1003301), the National Natural Science Founda-
tion of China (Grant No. 62022051, 61832011, 61772300,
61877035), and Huawei (Grant No. YBN2019125112).

288 19th USENIX Conference on File and Storage Technologies USENIX Association

References
[1] Introducing Amazon EC2 C5n Instances Fea-

turing 100 Gbps of Network Bandwidth.
"https://aws.amazon.com/about-aws/whats-

new/2018/11/introducing-amazon-ec2-c5n-

instances/", 2018.

[2] Barefoot Tofino. "https://barefootnetworks.

com/products/brief-tofino/", 2020.

[3] Facebook OpenRack. "https://engineering.fb.

com/data-center-engineering/open-rack/",
2020.

[4] FaRM Project. "https://www.microsoft.com/en-
us/research/project/farm/", 2020.

[5] GAM Repository. "https://github.com/ooibc88/
gam", 2020.

[6] Grappa Repository. "https://github.com/

uwsampa/grappa", 2020.

[7] Intel RSD. "https://www.intel.com/content/

www/us/en/architecture-and-technology/

rack-scale-design-overview.html/", 2020.

[8] LiveJournal Dataset. "http://snap.stanford.edu/
data/soc-LiveJournal1.html", 2020.

[9] Microsoft Rack-Scale Computers. "https://www.

microsoft.com/en-us/research/project/rack-

scale-computing/", 2020.

[10] RDMA Raw Packet. "https://community.

mellanox.com/s/article/raw-ethernet-

programming--basic-introduction---code-

example", 2020.

[11] TPC-C. "http://www.tpc.org/tpcc/", 2020.

[12] Twitter Dataset. "http://an.kaist.ac.kr/

traces/WWW2010.html", 2020.

[13] Dennis Abts, Steve Scott, and David J. Lilja. So Many
States, So Little Time: Verifying Memory Coherence
in the Cray X1. In Proceedings of the 17th Interna-
tional Symposium on Parallel and Distributed Process-
ing, IPDPS ’03, page 11.2, USA, 2003. IEEE Computer
Society.

[14] Marcos K. Aguilera, Nadav Amit, Irina Calciu, Xavier
Deguillard, Jayneel Gandhi, Pratap Subrahmanyam,
Lalith Suresh, Kiran Tati, Rajesh Venkatasubramanian,
and Michael Wei. Remote Memory in the Age of Fast
Networks. In Proceedings of the 2017 Symposium on
Cloud Computing, SoCC ’17, pages 121–127, New
York, NY, USA, 2017. ACM.

[15] Cristiana Amza, Alan L. Cox, Sandhya Dwarkadas,
Pete Keleher, Honghui Lu, Ramakrishnan Rajamony,
Weimin Yu, and Willy Zwaenepoel. TreadMarks:
Shared Memory Computing on Networks of Worksta-
tions. Computer, 29(2):18–28, February 1996.

[16] Brian N. Bershad, Matthew J. Zekauskas, and Wayne A.
Sawdon. The Midway Distributed Shared Memory Sys-
tem. Technical report, Pittsburgh, PA, USA, 1993.

[17] Pat Bosshart, Dan Daly, Glen Gibb, Martin Izzard,
Nick McKeown, Jennifer Rexford, Cole Schlesinger,
Dan Talayco, Amin Vahdat, George Varghese, and
David Walker. P4: Programming Protocol-independent
Packet Processors. SIGCOMM Comput. Commun. Rev.,
44(3):87–95, July 2014.

[18] Pat Bosshart, Glen Gibb, Hun-Seok Kim, George Vargh-
ese, Nick McKeown, Martin Izzard, Fernando Mujica,
and Mark Horowitz. Forwarding Metamorphosis: Fast
Programmable Match-action Processing in Hardware
for SDN. In Proceedings of the ACM SIGCOMM 2013
Conference on SIGCOMM, SIGCOMM ’13, pages 99–
110, New York, NY, USA, 2013. ACM.

[19] Chiranjeeb Buragohain, Knut Magne Risvik, Paul Brett,
Miguel Castro, Wonhee Cho, Joshua Cowhig, Nikolas
Gloy, Karthik Kalyanaraman, Richendra Khanna, John
Pao, Matthew Renzelmann, Alex Shamis, Timothy Tan,
and Shuheng Zheng. A1: A Distributed In-Memory
Graph Database. In Proceedings of the 2020 ACM SIG-
MOD International Conference on Management of Data,
SIGMOD ’20, page 329–344, New York, NY, USA,
2020. Association for Computing Machinery.

[20] Qingchao Cai, Wentian Guo, Hao Zhang, Divyakant
Agrawal, Gang Chen, Beng Chin Ooi, Kian-Lee Tan,
Yong Meng Teo, and Sheng Wang. Efficient Distributed
Memory Management with RDMA and Caching. Proc.
VLDB Endow., 11(11):1604–1617, July 2018.

[21] John B. Carter, John K. Bennett, and Willy Zwaenepoel.
Implementation and Performance of Munin. In Proceed-
ings of the Thirteenth ACM Symposium on Operating
Systems Principles, SOSP ’91, pages 152–164, New
York, NY, USA, 1991. ACM.

[22] Brian F. Cooper, Adam Silberstein, Erwin Tam, Raghu
Ramakrishnan, and Russell Sears. Benchmarking Cloud
Serving Systems with YCSB. In Proceedings of the
1st ACM Symposium on Cloud Computing, SoCC ’10,
pages 143–154, New York, NY, USA, 2010. ACM.

[23] Huynh Tu Dang, Daniele Sciascia, Marco Canini, Fer-
nando Pedone, and Robert Soulé. NetPaxos: Consensus
at Network Speed. In Proceedings of the 1st ACM SIG-
COMM Symposium on Software Defined Networking
Research, SOSR ’15, pages 5:1–5:7, New York, NY,
USA, 2015. ACM.

[24] Xavier Défago, André Schiper, and Péter Urbán. Total
Order Broadcast and Multicast Algorithms: Taxonomy
and Survey. ACM Comput. Surv., 36(4):372–421, De-
cember 2004.

USENIX Association 19th USENIX Conference on File and Storage Technologies 289

"https: //aws.amazon.com/about-aws/whats-new/2018/11/ introducing-amazon-ec2-c5n-instances/"
"https: //aws.amazon.com/about-aws/whats-new/2018/11/ introducing-amazon-ec2-c5n-instances/"
"https: //aws.amazon.com/about-aws/whats-new/2018/11/ introducing-amazon-ec2-c5n-instances/"
"https://barefootnetworks.com/products/brief-tofino/"
"https://barefootnetworks.com/products/brief-tofino/"
"https://engineering.fb.com/data-center-engineering/open-rack/"
"https://engineering.fb.com/data-center-engineering/open-rack/"
"https://www.microsoft.com/en-us/research/project/farm/"
"https://www.microsoft.com/en-us/research/project/farm/"
"https://github.com/ooibc88/gam"
"https://github.com/ooibc88/gam"
"https://github.com/uwsampa/grappa"
"https://github.com/uwsampa/grappa"
"https://www.intel.com/content/www/us/en/architecture-and-technology/rack-scale-design-overview.html/"
"https://www.intel.com/content/www/us/en/architecture-and-technology/rack-scale-design-overview.html/"
"https://www.intel.com/content/www/us/en/architecture-and-technology/rack-scale-design-overview.html/"
"http://snap.stanford.edu/data/soc-LiveJournal1.html"
"http://snap.stanford.edu/data/soc-LiveJournal1.html"
"https://www.microsoft.com/en-us/research/project/rack-scale-computing/"
"https://www.microsoft.com/en-us/research/project/rack-scale-computing/"
"https://www.microsoft.com/en-us/research/project/rack-scale-computing/"
"https://community.mellanox.com/s/article/raw-ethernet-programming--basic-introduction---code-example"
"https://community.mellanox.com/s/article/raw-ethernet-programming--basic-introduction---code-example"
"https://community.mellanox.com/s/article/raw-ethernet-programming--basic-introduction---code-example"
"https://community.mellanox.com/s/article/raw-ethernet-programming--basic-introduction---code-example"
"http://www.tpc.org/tpcc/"
"http://an.kaist.ac.kr/traces/WWW2010.html"
"http://an.kaist.ac.kr/traces/WWW2010.html"

[25] Aleksandar Dragojević, Dushyanth Narayanan, Orion
Hodson, and Miguel Castro. FaRM: Fast Remote Mem-
ory. In Proceedings of the 11th USENIX Conference
on Networked Systems Design and Implementation,
NSDI’14, pages 401–414, Berkeley, CA, USA, 2014.
USENIX Association.

[26] Aleksandar Dragojević, Dushyanth Narayanan, Ed-
mund B. Nightingale, Matthew Renzelmann, Alex
Shamis, Anirudh Badam, and Miguel Castro. No
Compromises: Distributed Transactions with Consis-
tency, Availability, and Performance. In Proceedings of
the 25th Symposium on Operating Systems Principles,
SOSP ’15, pages 54–70, New York, NY, USA, 2015.
ACM.

[27] Vasilis Gavrielatos, Antonios Katsarakis, Arpit Joshi,
Nicolai Oswald, Boris Grot, and Vijay Nagarajan. Scale-
out ccNUMA: Exploiting Skew with Strongly Consis-
tent Caching. In Proceedings of the Thirteenth EuroSys
Conference, EuroSys ’18, pages 21:1–21:15, New York,
NY, USA, 2018. ACM.

[28] Kourosh Gharachorloo. The Plight of Software Dis-
tributed Shared Memory. In Invited talk at 1st Workshop
on Software Distributed Shared Memory (WSDSM’99).
Citeseer, 1999.

[29] Joseph E. Gonzalez, Yucheng Low, Haijie Gu, Danny
Bickson, and Carlos Guestrin. PowerGraph: Distributed
Graph-parallel Computation on Natural Graphs. In Pro-
ceedings of the 10th USENIX Conference on Operating
Systems Design and Implementation, OSDI’12, pages
17–30, Berkeley, CA, USA, 2012. USENIX Associa-
tion.

[30] C. Gray and D. Cheriton. Leases: An Efficient Fault-
Tolerant Mechanism for Distributed File Cache Consis-
tency. In Proceedings of the Twelfth ACM Symposium on
Operating Systems Principles, SOSP ’89, page 202–210,
New York, NY, USA, 1989. Association for Computing
Machinery.

[31] Anoop Gupta, Wolf-Dietrich Weber, and Todd Mowry.
Reducing Memory and Traffic Requirements for Scal-
able Directory-based Cache Coherence Schemes. In
Scalable shared memory multiprocessors, pages 167–
192. Springer, 1992.

[32] Patrick Hunt, Mahadev Konar, Flavio P. Junqueira, and
Benjamin Reed. ZooKeeper: Wait-free Coordination
for Internet-scale Systems. In Proceedings of the 2010
USENIX Conference on USENIX Annual Technical Con-
ference, USENIXATC’10, pages 11–11, Berkeley, CA,
USA, 2010. USENIX Association.

[33] Xin Jin, Xiaozhou Li, Haoyu Zhang, Nate Foster,
Jeongkeun Lee, Robert Soulé, Changhoon Kim, and
Ion Stoica. Netchain: Scale-free sub-RTT Coordination.

In Proceedings of the 15th USENIX Conference on Net-
worked Systems Design and Implementation, NSDI’18,
pages 35–49, Berkeley, CA, USA, 2018. USENIX As-
sociation.

[34] Xin Jin, Xiaozhou Li, Haoyu Zhang, Robert Soulé,
Jeongkeun Lee, Nate Foster, Changhoon Kim, and Ion
Stoica. NetCache: Balancing Key-Value Stores with
Fast In-Network Caching. In Proceedings of the 26th
Symposium on Operating Systems Principles, SOSP ’17,
pages 121–136, New York, NY, USA, 2017. ACM.

[35] Rajeev Joshi, Leslie Lamport, John Matthews, Serdar
Tasiran, Mark Tuttle, and Yuan Yu. Checking Cache-
Coherence Protocols with TLA+. Form. Methods Syst.
Des., 22(2):125–131, March 2003.

[36] Anuj Kalia, Michael Kaminsky, and David G. Andersen.
FaSST: Fast, Scalable and Simple Distributed Transac-
tions with Two-Sided (RDMA) Datagram RPCs. In 12th
USENIX Symposium on Operating Systems Design and
Implementation (OSDI 16), pages 185–201, Savannah,
GA, November 2016. USENIX Association.

[37] Daehyeok Kim, Yibo Zhu, Changhoon Kim, Jeongkeun
Lee, and Srinivasan Seshan. Generic External Memory
for Switch Data Planes. In Proceedings of the 17th ACM
Workshop on Hot Topics in Networks, pages 1–7. ACM,
2018.

[38] Marios Kogias, George Prekas, Adrien Ghosn, Jonas
Fietz, and Edouard Bugnion. R2P2: Making RPCs First-
class Datacenter Citizens. In Proceedings of the 2019
USENIX Conference on Usenix Annual Technical Con-
ference, USENIX ATC ’19, pages 863–879, Berkeley,
CA, USA, 2019. USENIX Association.

[39] Haewoon Kwak, Changhyun Lee, Hosung Park, and
Sue Moon. What is Twitter, a Social Network or a
News Media? In Proceedings of the 19th International
Conference on World Wide Web, WWW ’10, pages 591–
600, New York, NY, USA, 2010. ACM.

[40] Collin Lee, Seo Jin Park, Ankita Kejriwal, Satoshi Mat-
sushita, and John Ousterhout. Implementing Lineariz-
ability at Large Scale and Low Latency. In Proceedings
of the 25th Symposium on Operating Systems Principles,
SOSP ’15, pages 71–86, New York, NY, USA, 2015.
ACM.

[41] Jialin Li, Ellis Michael, and Dan R. K. Ports. Eris:
Coordination-Free Consistent Transactions Using In-
Network Concurrency Control. In Proceedings of
the 26th Symposium on Operating Systems Principles,
SOSP ’17, pages 104–120, New York, NY, USA, 2017.
ACM.

[42] Jialin Li, Ellis Michael, Naveen Kr. Sharma, Adri-
ana Szekeres, and Dan R. K. Ports. Just Say No to
Paxos Overhead: Replacing Consensus with Network

290 19th USENIX Conference on File and Storage Technologies USENIX Association

Ordering. In Proceedings of the 12th USENIX Confer-
ence on Operating Systems Design and Implementation,
OSDI’16, pages 467–483, Berkeley, CA, USA, 2016.
USENIX Association.

[43] Jialin Li, Jacob Nelson, Ellis Michael, Xin Jin, and Dan
R. K. Ports. Pegasus: Tolerating Skewed Workloads
in Distributed Storage with In-Network Coherence Di-
rectories. In 14th USENIX Symposium on Operating
Systems Design and Implementation (OSDI 20), pages
387–406. USENIX Association, November 2020.

[44] Kai Li and Paul Hudak. Memory Coherence in Shared
Virtual Memory Systems. In Proceedings of the Fifth
Annual ACM Symposium on Principles of Distributed
Computing, PODC ’86, pages 229–239, New York, NY,
USA, 1986. ACM.

[45] Ming Liu, Liang Luo, Jacob Nelson, Luis Ceze, Arvind
Krishnamurthy, and Kishore Atreya. IncBricks: Toward
In-Network Computation with an In-Network Cache. In
Proceedings of the Twenty-Second International Con-
ference on Architectural Support for Programming Lan-
guages and Operating Systems, ASPLOS ’17, pages
795–809, New York, NY, USA, 2017. ACM.

[46] Zaoxing Liu, Zhihao Bai, Zhenming Liu, Xiaozhou Li,
Changhoon Kim, Vladimir Braverman, Xin Jin, and
Ion Stoica. DistCache: Provable Load Balancing for
Large-scale Storage Systems with Distributed Caching.
In Proceedings of the 17th USENIX Conference on File
and Storage Technologies, FAST’19, pages 143–157,
Berkeley, CA, USA, 2019. USENIX Association.

[47] Youyou Lu, Jiwu Shu, Youmin Chen, and Tao Li. Oc-
topus: An RDMA-enabled Distributed Persistent Mem-
ory File System. In Proceedings of the 2017 USENIX
Conference on Usenix Annual Technical Conference,
USENIX ATC ’17, pages 773–785, Berkeley, CA, USA,
2017. USENIX Association.

[48] Liang Luo, Jacob Nelson, Luis Ceze, Amar Phanishayee,
and Arvind Krishnamurthy. Parameter Hub: A Rack-
Scale Parameter Server for Distributed Deep Neural
Network Training. In Proceedings of the ACM Sym-
posium on Cloud Computing, SoCC ’18, page 41–54,
New York, NY, USA, 2018. Association for Computing
Machinery.

[49] James McCauley, Aurojit Panda, Arvind Krishnamurthy,
and Scott Shenker. Thoughts on Load Distribution and
the Role of Programmable Switches. SIGCOMM Com-
put. Commun. Rev., 49(1):18–23, February 2019.

[50] Vijay Nagarajan, Daniel Sorin, Mark Hill, and David
Wood. A Primer on Memory Consistency and Cache
Coherence, Second Edition. Synthesis Lectures on Com-
puter Architecture, 15:1–294, 02 2020.

[51] Jacob Nelson, Brandon Holt, Brandon Myers, Preston
Briggs, Luis Ceze, Simon Kahan, and Mark Oskin.

Latency-tolerant Software Distributed Shared Mem-
ory. In Proceedings of the 2015 USENIX Confer-
ence on Usenix Annual Technical Conference, USENIX
ATC ’15, pages 291–305, Berkeley, CA, USA, 2015.
USENIX Association.

[52] Rajesh Nishtala, Hans Fugal, Steven Grimm, Marc
Kwiatkowski, Herman Lee, Harry C. Li, Ryan McElroy,
Mike Paleczny, Daniel Peek, Paul Saab, David Stafford,
Tony Tung, and Venkateshwaran Venkataramani. Scal-
ing Memcache at Facebook. In Proceedings of the 10th
USENIX Conference on Networked Systems Design and
Implementation, NSDI’13, page 385–398, USA, 2013.
USENIX Association.

[53] Bill Nitzberg and Virginia Lo. Distributed Shared Mem-
ory: A Survey of Issues and Algorithms. Computer,
24(8):52–60, August 1991.

[54] Lawrence Page, Sergey Brin, Rajeev Motwani, and
Terry Winograd. The PageRank citation ranking: Bring-
ing order to the web. Technical report, Stanford InfoLab,
1999.

[55] Dan R. K. Ports and Jacob Nelson. When Should The
Network Be The Computer? In Proceedings of the
Workshop on Hot Topics in Operating Systems, HotOS
’19, pages 209–215, New York, NY, USA, 2019. ACM.

[56] Amedeo Sapio, Ibrahim Abdelaziz, Abdulla Aldilaijan,
Marco Canini, and Panos Kalnis. In-Network Com-
putation is a Dumb Idea Whose Time Has Come. In
Proceedings of the 16th ACM Workshop on Hot Topics
in Networks, HotNets-XVI, pages 150–156, New York,
NY, USA, 2017. ACM.

[57] Amedeo Sapio, Marco Canini, Chen-Yu Ho, Jacob Nel-
son, Panos Kalnis, Changhoon Kim, Arvind Krishna-
murthy, Masoud Moshref, Dan R. K. Ports, and Pe-
ter Richtárik. Scaling Distributed Machine Learning
with In-Network Aggregation. In 18th USENIX Sympo-
sium on Networked Systems Design and Implementation
(NSDI 21). USENIX Association, April 2021.

[58] Ioannis Schoinas, Babak Falsafi, Alvin R. Lebeck,
Steven K. Reinhardt, James R. Larus, and David A.
Wood. Fine-grain Access Control for Distributed Shared
Memory. In Proceedings of the Sixth International Con-
ference on Architectural Support for Programming Lan-
guages and Operating Systems, ASPLOS VI, pages
297–306, New York, NY, USA, 1994. ACM.

[59] Alex Shamis, Matthew Renzelmann, Stanko No-
vakovic, Georgios Chatzopoulos, Aleksandar Drago-
jević, Dushyanth Narayanan, and Miguel Castro. Fast
General Distributed Transactions with Opacity. In Pro-
ceedings of the 2019 International Conference on Man-
agement of Data, SIGMOD ’19, pages 433–448, New
York, NY, USA, 2019. ACM.

USENIX Association 19th USENIX Conference on File and Storage Technologies 291

[60] Yizhou Shan, Yutong Huang, Yilun Chen, and Yiying
Zhang. LegoOS: A Disseminated, Distributed OS for
Hardware Resource Disaggregation. In Proceedings
of the 12th USENIX Conference on Operating Systems
Design and Implementation, OSDI’18, pages 69–87,
Berkeley, CA, USA, 2018. USENIX Association.

[61] Yizhou Shan, Shin-Yeh Tsai, and Yiying Zhang. Dis-
tributed Shared Persistent Memory. In Proceedings of
the 2017 Symposium on Cloud Computing, SoCC ’17,
pages 323–337, New York, NY, USA, 2017. ACM.

[62] Jaswinder Pal Singh, Wolf-Dietrich Weber, and Anoop
Gupta. SPLASH: Stanford Parallel Applications for
Shared-Memory. SIGARCH Comput. Archit. News,
20(1):5–44, March 1992.

[63] Alexander Thomson, Thaddeus Diamond, Shu-Chun
Weng, Kun Ren, Philip Shao, and Daniel J. Abadi.
Calvin: Fast Distributed Transactions for Partitioned
Database Systems. In Proceedings of the 2012 ACM
SIGMOD International Conference on Management of
Data, SIGMOD ’12, page 1–12, New York, NY, USA,
2012. Association for Computing Machinery.

[64] Midhul Vuppalapati, Justin Miron, Rachit Agarwal, Dan
Truong, Ashish Motivala, and Thierry Cruanes. Build-
ing An Elastic Query Engine on Disaggregated Storage
. In 17th USENIX Symposium on Networked Systems
Design and Implementation (NSDI 20), pages 449–462,
Santa Clara, CA, February 2020. USENIX Association.

[65] Zhuolong Yu, Yiwen Zhang, Vladimir Braverman,
Mosharaf Chowdhury, and Xin Jin. NetLock: Fast,
Centralized Lock Management Using Programmable
Switches. In Proceedings of the Annual Conference
of the ACM Special Interest Group on Data Commu-
nication on the Applications, Technologies, Architec-
tures, and Protocols for Computer Communication, SIG-
COMM ’20, page 126–138, New York, NY, USA, 2020.
Association for Computing Machinery.

[66] Erfan Zamanian, Carsten Binnig, Tim Harris, and Tim
Kraska. The End of a Myth: Distributed Transactions
Can Scale. Proc. VLDB Endow., 10(6):685–696, Febru-
ary 2017.

[67] Hang Zhu, Zhihao Bai, Jialin Li, Ellis Michael, Dan
R. K. Ports, Ion Stoica, and Xin Jin. Harmonia:
Near-Linear Scalability for Replicated Storage with
in-Network Conflict Detection. Proc. VLDB Endow.,
13(3):376–389, November 2019.

[68] Hang Zhu, Kostis Kaffes, Zixu Chen, Zhenming Liu,
Christos Kozyrakis, Ion Stoica, and Xin Jin. RackSched:
A Microsecond-Scale Scheduler for Rack-Scale Com-
puters. In 14th USENIX Symposium on Operating
Systems Design and Implementation (OSDI 20), pages
1225–1240. USENIX Association, November 2020.

292 19th USENIX Conference on File and Storage Technologies USENIX Association

	Introduction
	Background
	Cache Coherence Protocols
	Programmable Switch

	Motivation
	Revisit Cache Coherence with Fast Network
	Challenges

	Concordia Overview
	Key Ideas
	Example

	Concordia Design In Depth
	FlowCC Protocol
	Protocol Details
	Correctness

	Ownership Migration
	Migration Requests
	Migration Workflow

	Packet Loss Handling
	Server Idempotence
	Switch Idempotence

	Practical Issues

	Implementation
	Evaluation
	Systems in Comparison
	Micro Benchmarks
	Sharing Ratio
	Read Ratio
	Data Locality
	Switch Failure Handling

	Distributed Key-Value Store
	Transaction Processing
	Distributed Graph Computing

	Related Work
	Conclusion
	Acknowledgements

