
This paper is included in the Proceedings of the
21st USENIX Conference on File and

Storage Technologies.
February 21–23, 2023 • Santa Clara, CA, USA

978-1-939133-32-8

Open access to the Proceedings
of the 21st USENIX Conference on

File and Storage Technologies
is sponsored by

λ-IO: A Unified IO Stack for
Computational Storage

Zhe Yang, Youyou Lu, Xiaojian Liao, Youmin Chen, Junru Li, Siyu He, and
Jiwu Shu, Tsinghua University

https://www.usenix.org/conference/fast23/presentation/yang-zhe

https://www.usenix.org/conference/fast23/presentation/yang-zhe

l-IO: A Unified IO Stack for Computational Storage

Zhe Yang, Youyou Lu, Xiaojian Liao, Youmin Chen, Junru Li, Siyu He, and Jiwu Shu⇤

Tsinghua University

Abstract
The emerging computational storage device offers an oppor-
tunity for in-storage computing. It alleviates the overhead of
data movement between the host and the device, and thus ac-
celerates data-intensive applications. In this paper, we present
l-IO, a unified IO stack managing both computation and stor-
age resources across the host and the device. We propose a
set of designs – interface, runtime, and scheduling – to tackle
three critical issues. We implement l-IO in full-stack soft-
ware and hardware environment, and evaluate it with synthetic
and real applications against Linux IO, showing up to 5.12⇥
performance improvement.

1 Introduction

Data-intensive applications (e.g., data mining) suffer from the
overhead of loading sizable data from the storage device for
processing. Emerging computational storage devices offer the
opportunity to alleviate the bother and thus gain increasing
attention in recent years [1–3]. They encapsulate in-device
computation resources, which enables the applications to of-
fload the computation down into the devices for in-storage
computing (ISC) [4, 5], therefore mitigating the overhead of
data transfer between the host and the device.

As both the host and the device can conduct computation,
we observe from experiments that blindly pushing compu-
tation tasks to the devices is not always optimal; instead,
applications may be faster on either side regarding to various
application features (e.g., computation complexity) and the
ever-changing status of the host and the device (e.g., cache
ratio, bandwidth consumption). Since the operating system
has delivered a sophisticated IO stack with mature function-
alities and interfaces, we explore a fundamental question in
the paper – how to build a unfied IO stack managing both
computation and storage resources across the host and the
device? For answering the question, we first identify three
critical issues to achieve the goal.

⇤Jiwu Shu is the corresponding author (shujw@tsinghua.edu.cn).

1) Interface. IO stack has been evolving the read and write
interfaces [6, 7], which are widely used by existing applica-
tions. We are committed to endowing them with the com-
putation capability of the host and the device at a minimum
change, i.e., unified interfaces for both sides that are generic
and rely on no specific file systems.

2) Runtime. IO stack contains components like the page
cache, file system, and device driver for storage management,
but has no computation runtime. Thus, we need to build a
unified runtime that enables executing the same piece of com-
putation task on either the host or the device. eBPF [8, 9] is
the preference for constructing such runtime: it proposes a
hardware-independent intermediate bytecode format, so that
the program can be compiled once and run on various ISAs.
However, eBPF is still inapplicable to ISC due to its overstrict
static verification (§2.3).

3) Scheduling. IO stack features rich scheduling mecha-
nisms for reads and writes, but computation makes the dis-
patching mechanism more complicated. As application per-
formance varies over features and system status as mentioned
above, we aim at detecting and dispatching requests to the
faster side effectively and efficiently.

In this paper, we propose l-IO, a unified IO stack that
comes with three key designs to tackle the aforementioned
issues. First, l-IO extends IO stack with l extension across
the host and the device to support ISC. Besides normal IOs,
the extended interfaces enable an application to submit l
requests to customize, load and invoke computational logic (l
function) during reading and writing a file. With the extended
interfaces, developers can still use their familiar programming
style to access and process file data, hiding the details of how
computation tasks are executed and scheduled.

Second, l-IO proposes unified l runtime that crosses the
host-and-device boundary with two counterparts. At the core
of l runtime is sBPF (s stands for storage). For managing and
executing l functions atop heterogeneous hardware of both
sides, l-IO extends eBPF to sBPF, which supports pointer ac-
cess and dynamic-length loop (loops are bounded at runtime
to a specified threshold). In contrast to static verification of

USENIX Association 21st USENIX Conference on File and Storage Technologies 347

eBPF, sBPF brings in dynamic verification with extra infor-
mation from l-IO.

Third, l-IO adopts dynamic request dispatching to desig-
nate requests to the faster side effectively and efficiently. For
effectiveness, we model the execution time of a l request
in both sides, so that the l-IO finds the faster side. For effi-
ciency, l-IO profiles partial requests periodically to determine
variables in the execution time model.

We implement l-IO in the full-stack software and hardware
environment (§4). We modify Linux kernel to integrate l ex-
tension and build an NVMe device with l extension support
on a real hardware platform. We compare l-IO and vanilla
Linux IO on synthetic applications, showing 5.12⇥ improve-
ment. We also port a real application, Spark SQL [10], to l-IO
and evaluate its end-to-end performance with TPC-H [11],
showing up to 2.15⇥ improvement. We open source l-IO at
https://github.com/thustorage/lambda-io.

In summary, we make the following contributions.
• We present l-IO, a unified IO stack managing both compu-

tation and storage resources across the host and the device.
• We propose a set of designs, unified interfaces, l runtime,

and dynamic request dispatching, to exploit the benefits of
both sides.

• We implement l-IO in the full-stack software and hard-
ware environment, and evaluate it with synthetic and real
applications against vanilla Linux IO, showing significant
performance improvement.

2 Background and Motivation

2.1 In-Storage Computing and IO Stack
In-storage computing (ISC) originates in the disk era [4, 12],
aiming to ship computation closer to storage. It mitigates
the data movement overhead and exploits the in-device in-
ternal bandwidth. ISC gets revitalized with the advent of
SSDs [5, 13], as an SSD typically has more powerful com-
putation resources and higher internal bandwidth. Besides
the researches for specific domain acceleration [14–22], gen-
eral frameworks [23–27] allow programmers to define and
offload their own computational logic. They mostly focus on
providing manipulation interfaces in the userspace and accel-
erating computation in the device, but do not fully exploit the
host-side computation and storage resources.

IO stack is a fundamental part of the operating system
for managing storage devices, including the device driver,
the block layer, and the file system. Although userspace IO
libraries like SPDK [28] arise for their kernel-bypass low
latency, the IO stack is still indispensable in most scenarios
for three reasons. 1) Compatibility. A sea of applications
rely on POSIX file interfaces to access storage data. Program-
mers are also accustomed to leveraging APIs of the IO stack.
2) Functionality. The IO stack offers abundant modules and
functionalities, including the file system and the page cache.

Host
Device

La
te

nc
y

(m
s)

Execution Progress

8

16

0% 20% 40% 60% 80% 100%

Ex
ec

ut
io

n
Ti

m
e

(s
) Host

Device

Application

0
4
8

12
16
20
24

Stats64 Stats32

(a) (b)

Figure 1: Performance Comparison of Host and Device.
Stats64 and Stats32 are two applications. They view the file
data as 64-bit/32-bit integers and calculates the sum, maxi-
mum, and minimum. Refer to §5.2 for detailed settings.

source
code

eBPF
programcompiler verifier JITer executable

binary

Figure 2: The Progress to Run eBPF/sBPF.

In contrast, a userspace IO library only supports data transfer
with the raw storage device. The application has to build its
own file system and data cache. 3) Sharing. The IO stack
has well-tested resource allocation and security mechanisms,
so that users and applications can share the whole device.
Sharing is also hard to be implemented in the userspace and
absent from userspace IO libraries.

As ISC becomes increasing popular and the IO stack has
unique advantages, we explore how to incorporate ISC to the
IO stack in this paper.

2.2 Host-Device Coordination
We analyze the need for host-device coordination through
application experiments. The key observation is that either
the host or the device may be faster to run an application. 1)
Different applications have different features and thus pre-
fer different sides. We run Stats64 and Stats32 either in the
host or the device (detailed settings in §5.2). As reported in
Figure 1(a), Stats64 runs faster in the device while Stats32
runs faster in the host. 2) Even one application also favors
different sides during the execution progress. We measure the
request latency on both sides when running Stats64 with the
warmed page cache (detailed settings in §5.4.1). As reported
in Figure 1(b), earlier requests are faster in the device as the
host does not cache data. The host outperforms significantly
when it has the data in cache after 20%.

We conclude that blindly pushing down all the computa-
tional logic to the device may deliver suboptimal application
performance. Many factors affect the execution time, such
as computation complexity, data size, and cache. Thus, one
should take factors into consideration and dispatch computa-
tion to their preferred side for better performance.

2.3 eBPF and its Limitations
eBPF (extended Berkeley Packet Filter) [8] is an in-kernel
virtual machine. It enables the user to run a piece of logic

348 21st USENIX Conference on File and Storage Technologies USENIX Association

https://github.com/thustorage/lambda-io

inside the kernel without modifying the kernel source code
or loading a kernel module [9]. Figure 2 shows the entire
progress to run eBPF in three steps. 1) The user compiles
the source code to an eBPF program in eBPF bytecode and
loads the program via a specific syscall. 2) The in-kernel
static verifier checks the program to ensure safety. 3) The
just-in-time compiler (JITer) [8] translates the eBPF program
to executable binary in native hardware for later execution.
eBPF is used in a wide variety of domains such as network
filtering, tracing, and profiling [9].

eBPF receives greater attention from in-storage computing
researches recently [27, 29–34]. It becomes the preference
for constructing the ISC runtime, because eBPF provides
a hardware-independent bytecode format. The source code
can be compiled to an eBPF program only once but runs on
general CPUs (e.g. x86, ARM) and specific hardware (e.g.
FPGA [35], ASIC [36]). It enables inserting user-defined logic
to the devices [31, 35, 37] apart from the kernel.

However, we find that eBPF is inapplicable to general ISC
because of its overstrict static verifier. eBPF lacks two critical
features, pointer access and dynamic-length loop, which are
widely employed in data processing code. We explain lim-
itations with an example. compute function in Listing 1 is
the typical computation code to sum values, but fails to pass
the eBPF static verifier for two reasons. 1) Pointer access.
The eBPF verifier checks that the program does not access
arbitrary kernel addresses. As input and output are memory
pointers, the verifier does not know their boundaries and pro-
hibits pointer arithmetic and dereference. 2) Dynamic-length
loop. eBPF checks each loop by simulating the iteration of
the loop during the static verification. It supports a bounded
loop [38] when the loop boundary is bounded so that the
loop finishes in bounded time in the simulation. However,
length_i is unknown during the static verification and is dy-
namically determined before execution. In the verifier’s view,
the loop is unbounded and the program does not complete in
limited time. Therefore, it rejects the program.

We notice that XDP [37], a programmable network packet
processing framework based on eBPF, proposed an explicit
checking mechanism for pointer access. With the network
packet content in the memory buffer [data, data_end), be-
fore dereferencing a pointer data+offset, the program is
required to explicitly check data+offset < data_end in
the code. However, XDP requires offset to be a known con-
stant. So this explicit checking mechanism does not work for
general ISC, where offset can be a variable.

In a nutshell, eBPF needs extension to embrace ISC without
compromising safety.

3 Design

This section presents the design of l-IO. We begin with an
overview and describe a range of key techniques in detail.

Listing 1: Sample Pseudo-Code of Summing a File
1 // sum.c
2 ssize_t compute(void *output, void *input, size_t

length_i) {

3 int sum = 0;

4 for (int i = 0; i < length_i / sizeof(int); i++)

{

5 sum += ((int *)input)[i];

6 }

7 *output = sum;

8 return sizeof(int); // return the output
size

9 }

10

11 // main.c
12 int vanilla_io_sum(int fd, int file_size) {

13 char buf[BUF_SIZE];

14 int sum = 0, sum_s;

15 for (int i = 0; i < file_size; i += BUF_SIZE) {

16 pread(fd, buf, BUF_SIZE, i);

17 compute(&sum_s, buf, BUF_SIZE);

18 sum += sum_s;

19 }

20 return sum;

21 }

22

23 int lambda_io_sum(int fd, int file_size) {

24 int l_id = load_l("sum.sbpf");
25 char buf[sizeof(int)];
26 int sum = 0;

27 for (int i = 0; i < file_size; i += BUF_SIZE) {

28 pread_l(fd, buf, BUF_SIZE, i, l_id);
29 sum += *(int *)buf;

30 }

31 return sum;

32 }

33

34 int main() {

35 int fd = open("path/to/file");

36 vanilla_io_sum(fd, FILE_SIZE);

37 lambda_io_sum(fd, FILE_SIZE);

38 close(fd);

39 return 0;

40 }

3.1 Overall Architecture
Figure 3 sketches the overall architecture of l-IO. l-IO ex-
tends the vanilla IO stack with l extension to support offload-
ing computation in the host kernel and the device. l extension
consists of three parts, l-IO APIs, l runtime (l-kernel run-
time and l-device runtime), and request dispatcher.
l-IO APIs (§3.2) introduce additional programming inter-
faces for applications. Besides normal IOs to a file, an appli-
cation can submit l requests to customize the computational
logic (l function), load the l function to l-IO, and invoke the
l function during reading and writing a file.
l runtime (§3.3) crosses the host-and-device boundary with
two counterparts, l-kernel runtime and l-device runtime.
They provide identical interfaces of computation and data
to execute a l request. l-IO extends eBPF to sBPF to support
ISC, so that the l function needs to be compiled and loaded
only once, but runs in both sides.
Request dispatcher (§3.4) aims to designate l requests to
the l-kernel runtime or the l-device runtime effectively and
efficiently. l-IO profiles and monitors the status of the host
and the device periodically. It estimates the request execution
time of a l request using our proposed model, and dispatches

USENIX Association 21st USENIX Conference on File and Storage Technologies 349

File System (ext4, F2FS, XFS, …)
Device Driver

Storage Media

IO Firmware

VFS & Page Cache

Application

Storage Device

Kernel Space

User Space

Vanilla IO Stack

𝜆 Extension (Ext.)

Normal IO Requests

𝜆 Requests

𝜆 Ext. Control Path

Req. Dispatcher
(§ 3.4)

𝜆-Device
Runtime (§ 3.3)

𝜆-Kernel
Runtime (§ 3.3)

𝜆-IO APIs(§ 3.2)

Figure 3: Overall Architecture of l-IO.

Op Interface
l ssize_t compute(void *output, void

*input, size_t length_i)

load l_id = load_l(l_path)
open fd = open(file_path)

close close(fd)

read pread(fd, buf, length, offset)

pread_l(fd, buf, length, offset, l_id)

write pwrite(fd, buf, length, offset)

pwrite_l(fd, buf, length, offset, l_id)

* We omit some well-known types of parameters and return values.

Table 1: l-IO APIs.

the request to the faster side.

3.2 l-IO APIs and Workflow
l-IO inherits the vanilla IO fundamental interfaces to open,
close, read, and write a file, as listed in Table 1. Additionally,
l-IO introduces l load, read and write interfaces, for an ap-
plication to submit a l request to offload computation during
data transfer.
lll . The first line of Table 1 shows the interface to program the
computational logic. Parameters of input and output point
to input and output buffers, along with length_i to indicate
the size of the input buffer. Thus, the computational logic
in the function body can access data through pointers as it
does in normal memory computing. It consumes data from
the input buffer and produces data to the output buffer.

It is notable that the l function body need not worry about
the specific value of the two pointers, no matter the computa-
tional logic runs in the l-kernel or the l-device runtime. The
l runtime prepares memory buffers and sets proper values

before executing the l function.

Load. load_l is the interface to load a l function. The user
compiles the l function source code to an sBPF program, and
loads it via load_l. load_l returns l_id as the handle to be
used in later l read and write calls.

The user needs to compile and load a l function only once,
although l-IO has two runtimes in the host kernel and the de-
vice. Receiving a loading call, l-IO parses the sBPF program
file, and transfers the bytecode to both the l-kernel runtime
and the l-device runtime. Afterward, each runtime invokes
the sBPF verifier and JITer to translate the bytecode to an
executable binary in the native ISA for later execution.

Open and close. Two APIs remain intact. All l extension
APIs accept the identical fd as vanilla ones. Thus, the appli-
cation can use normal and l extension APIs simultaneously.

Read. Compared to normal read, l read (pread_l) adds a pa-
rameter l_id to indicate the invoked l funtion. l-IO loads file
data of the specified range as the input, performs computa-
tion of l_id, and finally copies the output to the application-
allocated buffer (buf).

To provide better intuition, we walk through how pread_l
works with an example of summing values in a file (Listing 1).
vanilla_io_sum finishes the job via vanilla IO. The appli-
cation repeatedly reads file data into a buffer (buf). Then
it runs the computational logic (compute) to sum values.
lambda_io_sum shows how to program the same logic us-
ing l read (pread_l). It has almost the same skeleton as
vanilla_io_sum. The application loads the compiled sBPF
program in Line 24, and gets a handle l_id. When the appli-
cation calls pread_l, it additionally passes l_id.

The l runtime performs pread_l in four steps. ∂ It loads
the file data of the specified range into an input memory
buffer, and sets the input and length_i parameters of the
l function. ∑ It allocates an output memory buffer and sets
it as output of the l function. The output memory buffer is
as large as the input by default. ∏ It triggers the l function,
which sums data in the input and stores the result in the
output. π It copies data in output to the user-allocated buf,
along with the output size represented by the return value of
compute. In this way, the application only needs to allocate a
buffer to receive the execution result, instead of the file data.

Write. l write (pwrite_l) works similarly to l read in the
reversed direction. l-IO uses data in buf as the input, runs
the function of l_id, writes the output to the file at the
offset and returns the output size.

The l runtime performs pwrite_l in four steps. ∂ It
copies data of buf to a memory buffer in l extension runtime,
sets it as the input of l. ∑ It allocates an output memory
buffer and sets it as output of l. ∏ It triggers the l func-
tion, and stores the output data to the file from the position of
offset. π It returns the output size to the application.

350 21st USENIX Conference on File and Storage Technologies USENIX Association

3.3 Cross-Platform l Runtime
The l runtime plays a central role in executing l requests
of load_l, pread_l, and pwrite_l. To execute l requests
in both the host kernel and the device, the l runtime crosses
the boundary of the host and the device with two instances,
l-kernel runtime and l-device runtime.

To achieve the cross-platform runtime design, we identify
two critical aspects of challenges, computation and data. For
computation, both l-kernel and l-device runtimes have to
store and run the same l functions, although they are on top
of different computation hardware platforms. For data, l func-
tions should be able to access consistent file data in l-kernel
and l-device runtimes, along with other userspace applica-
tions. We describe how to tackle two challenges separately.

3.3.1 Computation: Extending eBPF to sBPF
At the core of the l runtime is sBPF. As we state in §2.3, eBPF
faces two critical limitations, pointer access and dynamic-
length loop. We aim to tackle limitations efficiently. Our key
idea is to bring in dynamic verifications with extra informa-
tion from l-IO, so as to check the pointer access and loop
during running. sBPF inherits the bytecode format of eBPF,
but extends the verifier and JITer.
For the pointer access, sBPF focuses on two memory buffer
pointers, input and output. The sBPF verifier tracks all
the pointer variables derived from input and output, by
adding or subtracting an offset. For each dereference of such
pointers (e.g. line 5 in Listing 1), the sBPF JITer inserts ad-
ditional native code for checking the pointer during running.
sBPF dynamically checks whether the dereferenced pointer
falls within the given region [input,input+length_i) or
[output,output+length_i), and returns an error when en-
countering an out-of-boundary pointer dereference. After-
ward, the l runtime terminates the execution of the pread_l
or pwrite_l request with an error code to be handled by the
application. In this way, sBPF ensures that pointer accesses
to the input and output buffers are valid.

One may notice that length_i is passed by the application.
For safety, l-IO checks whether length_i is valid through
kernel safety verifications (e.g. by rw_verify_area), before
passing length_i to the l function.

l-IO does not introduce eBPF helper functions such as
bpf_probe_read [39] to check pointer access. The root
cause is that each eBPF helper function call is translated to a
function call in the native binary by the JITer. If a program
accesses input and output buffers via helper functions, the
calls incur heavy overhead.

Note that sBPF only handles two pointers of input and
output specially, as they are allocated and managed by l
runtime. Other pointers are still verified by the static verifier.
For the dynamic-length loop, sBPF applies a dynamic count.
We observe that, the program has at least a jump-back instruc-
tion with a negative offset to implement a loop. Therefore,
sBPF limits the number of executing jump-back instructions.

The sBPF verifier allows loops during the static verification.
The sBPF JITer allocates a counter and inserts extra native
code beside each jump-back instruction. Once a jump-back
instruction is executed, the counter increases. If the counter
reaches the preset loop threshold, the program terminates and
returns an error. As we limit the number of jump-backs, the
program completes in bounded time.

We further describe how to choose the loop threshold value.
For an ISC program, the number of loops is typically propor-
tional to the input buffer size. In practice, the threshold can
be set to the same order of magnitude as the maximum input
buffer size of programs. In this way, l-IO permits normal
programs and aborts buggy or malicious programs.
Safety. sBPF changes the logic of pointer access and dynamic-
length loop, but does not introduce extra safety risks compared
to eBPF. In eBPF, the Linux kernel and the eBPF toolchain
(e.g., verifier, and JITer) are trusted, while the user-written
source code is untrusted. In sBPF, both the kernel and the
eBPF toolchain are extended so that the source code running
with sBPF can behave differently in two aspects:

1) Pointer accesses to the input/output buffer. The l
runtime allocates the input/output buffer and checks that the
user has permission to access the file range (l-IO strictly
follows the ACL checking of the file system when accessing
file data). Once a l request finishes, the input/output buffer is
reclaimed as well. Except for the input/output buffer, pointer
accesses to other memory space are verified by eBPF’s default
static verifier. As a result, sBPF does not introduce extra risks
of memory leak compared to eBPF.

2) Dynamic-length loops. sBPF does not allow infinite
loops during execution; instead, sBPF allows loops to pass
the verifier’s checking, but lets the program abort if a loop
repeats too many times.

3.3.2 Data: Consistent File Access
As we state in §3.2, the l function accesses file data via the
input pointer in pread_l while via the output pointer in
pwrite_l. Given that there are a sea of file systems, such as
ext4, F2FS and XFS, we introduce how l-IO access file data
consistently without relying on any specified file systems for
compatibility. Our key idea is to leverage generic interfaces
and components, e.g. existing syscalls, VFS, and page cache
in the kernel, and to let the host control consistency.
l-kernel runtime. Considering compatibility to a host of
underlying file systems, we place the l-kernel runtime atop
VFS and page cache, as shown in Figure 3. Regardless of the
specific file system, VFS provides the unified file abstraction
and access interfaces. For a l request, the l-kernel runtime
accesses file via kernel_read and kernel_write.

To optimize read performance, we propose kernel-version
mmap, kernel_mmap to avoid the heavy data copy during
kernel_read. l-IO maps the pages located in the requested
range to a kernel virtual address region via vm_map_ram. Af-
terward, l-IO passes the mapped virtual address as the input

USENIX Association 21st USENIX Conference on File and Storage Technologies 351

pointer, so that the l function can access the file directly.
l-device runtime. Unlike the host end, the device is agnostic
to the host-side file semantics. The device first has to know
the exact storage locations of a range in the file. So the host
is responsible for extracting necessary metadata and pushing
it down to the device. Fortunately, Linux offers FIEMAP and
FIBMAP ioctl interfaces [40, 41], to retrieve the file extent
metadata of storage locations by given offset and length.

For l read, l-IO gets extent metadata of the specified range
inside the file, and pushes the extent down to the device. The
l-device runtime loads the data from given storage locations
to a continuous device memory buffer, and passes the buffer
address to the l function running in the device.

l-IO does the similar for l write inside the allocated scope
of a file. In the case that a l write appends the output file, l-
IO preallocates device storage space by fallocate [42] and
then retrieves the file extent metadata of storage locations. Ad-
ditionally, l-IO resets the unwritten flag as previous works
do [1, 25, 43]. In this way, the host can read data written by
the l write on the device, instead of zeros.
Consistency. As data may be modified in the host userspace,
the host kernel, and the device, l-IO has to guarantee data
consistency among three places.

One is the host-side consistency between the userspace
and the kernel. Both the userspace and the kernel rely on
the identical VFS and page cache to access file data. As the
l-kernel runtime reads and writes file through kernel_read

and kernel_write, these calls go through the same path as
userspace calls. In this way, consistency is guaranteed by the
VFS, page cache, and underlying file systems.

The other is the consistency between the host and the de-
vice. l-IO maintains the consistency in the host. During exe-
cuting a l read/write request in the device, l-IO acquires a
read/write lock on the file, to guarantee consistency against
other normal IO and l requests. Additionally, l-IO manipu-
lates the host-side page cache before dispatching l requests
to the l-device runtime. Before dispatching a l read request
to the device, l-IO flushes dirty cache within the overlapped
range, so that the device can view the up-to-date version.
Before dispatching a l write request to the device, l-IO inval-
idates the host-side page cache within the overlapped range,
so that the host can retrieve new data written on the device.

We propose l-kernel not for performance gaining over
vanilla IO, but for two strengths. 1) l-kernel, together with
l-device, offers unified interfaces and runtime across the host
and the device. On basis of this, the computational logic can
be run and dispatched on both sides. 2) With the host-side
components in the kernel, l-IO can better exploit the capabili-
ties of the vanilla Linux IO stack, e.g. compatibility, function-
ality, and sharing, as we mention in §2.1. In this way, l-IO
is friendly to programmers, since a sea of applications use
POSIX file interfaces of the vanilla IO stack.

3.4 Dynamic Request Dispatching
l-IO executes l requests in both sides, but a request can be
faster in either side, as we state in §2.2. The design goal of
the request dispatcher is to designate l requests to the faster
side effectively and efficiently.

For effectiveness, we model the execution time of a l re-
quest in both sides, so that the dispatcher can predict the
execution time and find the faster side. For efficiency, the re-
quester dispatcher should introduce low extra overhead to the
execution. To this end, l-IO periodically profiles partial re-
quests to determine variables in the model, rather than profiles
each l request. We describe them in detail below.
3.4.1 Modeling Execution Time
We first consider l read. We start by defining a few symbols,
the loaded data size from the storage media D, the bandwidth
between the storage media and the device controller buffer Bs
for a request, the bandwidth between the device and the host
Bd for a request, and the host-side computing bandwidth Bh
for a request.

We notice that multiple requests may be submitted and
executed concurrently. Therefore, these bandwidth variables
correspond to a request, instead of all the concurrent requests.
When multiple requests are executed concurrently, the data
transfer and computation bandwidth of each request is af-
fected by other requests and thus less than the aggregated.

The execution time in the host th is composed of transfer-
ring data from the storage media to the device controller, then
to the host, and the host computing, as shown in Equation 1.

If the computation happens in the device, the transferred
data size between the host and the device becomes aD, where
a is the ratio between the output and input. The computing
bandwidth in the device is bBh, where b is the ratio between
the device and the host computing bandwidth. We have the
execution time td in Equation 1.

(
th = D

Bs
+ D

Bd
+ D

Bh
i f in the host

td = D
Bs
+ D

bBh
+ aD

Bd
i f in the device

(1)

Similarly, given the input data size D, we have the following
to calculate the execution time for a l write

(
th = D

Bh
+ aD

Bd
+ aD

Bs
i f in the host

td = D
Bd

+ D
bBh

+ aD
Bs

i f in the device
(2)

We further discuss the impact of the host-side cache on l
read. The cache reduces data transfer from the device and
saves significant data movement overhead. Given the cache
ratio c, Equation 1 becomes

(
th =

(1�c)D
Bs

+ (1�c)D
Bd

+ D
Bh

i f in the host
td = D

Bs
+ aD

Bd
+ D

bBh
i f in the device

(3)

The higher the ratio of the cached file data, the more we tend
to dispatch the l read request to the host.

352 21st USENIX Conference on File and Storage Technologies USENIX Association

3.4.2 Periodical Profiling and Dispatching
To estimate the execution time using the above equations,
l-IO has to determine variable values in the equations. We
divide seven variables into two groups, one’s exact values
obtained directly and one estimated by profiling.

The first group includes the input data size D and the host-
side cache ratio c. D is the length_i in Table 1. To get c,
the request dispatcher walks the page cache tree to count the
number of cached pages nc within the given range. Afterward,
it calculates c by nc ⇥PAGE_SIZE/ length_i.

The second group includes the remaining five variables, Bs,
Bd , Bh, a, and b. We call them profiling variables. l-IO does
not know their exact values for a l request in advance, so it es-
timates their values through periodical profiling. It is notable
that Bs is the bandwidth for a request, but is not necessarily
equal to the physical bandwidth between the storage media
and the device controller buffer. Bs changes over time, like
when multiple requests share the device, and so are the other
variables. Thus we call these variables in the second group
profiling variables and describe how to profile them.

We notice that profiling variables vary on different files
and l functions. Therefore, l-IO profiles their values for
each (file_path, l_id) pair separately. The dispatching sup-
ports collocated applications as (file_path, l_id) pairs may
come from different applications running simultaneously.

To determine these variables efficiently, l-IO profiles par-
tial requests periodically rather than profiles each request. For
a given (file_path, l_id) pair, l-IO sets a profiling period,
like n requests. For the beginning k requests in a period (we
refer to k as profiling length), l-IO submits them to both the
l-kernel and l-device runtimes. Each runtime measures the
values of profiling variables of a request during execution.
After k requests complete, l-IO calculates the average of each
variable and uses it as the estimated value.

For the following requests in the same period, l-IO cal-
culates the estimated execution time in both sides using the
equations and estimated variable values. Then it dispatches
the request to the faster side. When a new period comes, l-IO
repeats the profiling to estimate new values for the variables.

To achieve a balance between effectiveness and efficiency,
l-IO should be careful to set values of two profiling parame-
ters, i.e. profiling period and profiling length. With a smaller
profiling period and a bigger profiling length, the dispatcher
can keep track of the status and find the faster side more effec-
tively, but will induce higher overhead. In contrast, a bigger
profiling period and a smaller profiling length lead to lower
overhead, but the dispatcher may miss real-time changes in
the status and make suboptimal decisions.

4 Implementation

We implement l-IO in the full-stack software and hardware
environment. We modify the Linux kernel to integrate l exten-

sion in the host and build an NVMe device with l extension
support on a real hardware platform. We introduce the imple-
mentation details in this section.
Host. We implement the request dispatcher and the l-kernel
runtime in the host kernel with a kernel module. The kernel
module creates a procfs [44] file to receive l extension calls.
We modify the eBPF verifier and the x86 JITer.
Device. We implement the device-side components on a real
hardware platform, Daisy OpenSSD [45]. It is representative
of computational storage devices, as one of the latest itera-
tions of the OpenSSD project [46, 47]. OpenSSD is widely
recognized and used by ISC researches from both industry
and academia [18–21, 27, 48, 49]. The device connects to the
host via PCIe and operates as an NVMe drive. We migrate
OpenExpress [50, 51], an open-source NVMe controller, to
the platform. We refactor the NVMe firmware thoroughly,
modify the eBPF verifier and the ARM eBPF JITer from the
kernel, and construct the l-device runtime atop them.
Communication. We use standard NVMe over PCIe to com-
municate between the host and the device. l-IO delivers nor-
mal IO requests through existing NVM IO commands, and
customizes three Vendor Specific Commands [52, 53] for l
load, read, and write. l-IO creates one standalone NVMe com-
mand for one l request separately, delivering all necessary
file extent metadata and indicating the l function it triggers.

5 Evaluation

We evaluate l-IO to answer the following questions:
• How does l-IO perform on typical in-storage computing

applications compared to existing approaches? (§5.2)
• How does l-IO perform when collocated applications run

concurrently? (§5.3)
• How do workload characteristics and dispatching configu-

rations affect the performance? (§5.4)
• How is the sBPF overhead compared to eBPF? (§5.5)
• Can the end-to-end performance of a real application benefit

from l-IO? (§5.6)

5.1 Experimental Setup
Testbed. Table 2 shows our detailed testbed configurations.
We implement l-IO on the host and the device as stated in §4.
The host CPU has 4 physical cores and 8 hyperthreads. The
device SoC has 4 ARM cores. The 2GB SoC memory acts as
the device controller memory. We equip the device with two
32GB DRAM DIMMs to act as the backend storage media,
as the hardware board manufacturer provides no NAND flash
modules. The data transfer bandwidth between the storage
media and the device controller memory is 3.52GB/s. The
bandwidth between the device controller memory and the
host is 3.22GB/s. The bandwidth for ARM cores to access
the device controller memory is 5.09GB/s. The performance
is comparable to real SSDs and hardware platforms in recent
works [19, 24, 48, 54].

USENIX Association 21st USENIX Conference on File and Storage Technologies 353

Host

CPU Intel Core i7-7700 @3.6GHz (4C8T)
Memory 16GB
OS Ubuntu 20.04.2 LTS
Kernel Linux 5.10.21

Device
SoC Xilinx Zynq Ultrascale+ ZU17EG
Memory 2GB
Storage 64GB

Table 2: Testbed Configurations.

App. Description ISC LoC
l-IO INSIDER [25]

Stats64 Read the file data as 64-bit in-
tegers and calculate the sum,
maximum, and minimum.

30 240

Stats32 Read the file data as 32-bit in-
tegers and calculate the sum,
maximum, and minimum.

30 240

KNN Read vectors in the file and
calculate distances between a
target vector.

32 99

Grep Read rows in the file and
match a target string.

35 254

Bitmap Decompress a bitmap and
write to the file.

20 188

Table 3: Information of Synthetic Applications.

Workloads. We choose five synthetic applications Stats64,
Stats32, KNN, Grep, and Bitmap with their information listed
in Table 3. The first four applications read data from the
source file and process it. The last application, Bitmap, de-
compresses a bitmap passed by buf and writes the output to
the file. They fit the in-storage computing scenario well and
are widely studied and evaluated in previous works [4, 13,
14, 24, 25, 27, 55]. The program code follows the skeleton of
Listing 1 and costs little extra overhead to implement.

The input dataset file of four read applications is 16GB in
size. The output file of Bitmap is also 16GB in size. As the
output data also requires persistence, we synchronize the file
after writing. We format the storage device to ext4 to store
files. Applications run with 8 host threads and read/write file
data to an 8MB buffer in each iteration. We set loop threshold
(§3.3) to 16 million, profiling period (§3.4) n to 200, and
profiling length k to 5. We keep the above configurations
throughout experiments unless otherwise specified.
Porting overhead. As shown in Table 3, the LoC of imple-
menting the same offloaded computational logic for l-IO is
significantly smaller than INSIDER [25]. We count the ISC
LoC of INSIDER from its code repository [56]. The porting
overhead of INSIDER is large, like other FPGA-based ISC
frameworks. This is because INSIDER leverages HLS [57]
to implement the computational logic on FPGA. Although
HLS reduces the programming overhead, it still requires the
programmer to be an expert in FPGA details [58] and write
much hardware-specific code to optimize the performance.
Comparing targets. We adopt six IO modes in our evaluation,

three vinalla IO modes and three l-IO modes.
• (B) Buffer IO: uses the default IO mode of vanilla IO
pread/pwrite to access file data. It enables the page cache.
The computational logic is directly compiled to the native
ISA, and so are Direct IO and Mmap.

• (I) Direct IO: similar to Buffer IO but opens the dataset file
with O_DIRECT. It bypasses the kernel page cache.

• (M) Mmap: maps the dataset file to the userspace virtual
address of the process. It eliminates data copy between the
kernel and the userspace.

• (K) l-IO Kernel: integrates the computational logic using l-
IO APIs and executes all the requests in the kernel runtime.

• (D) l-IO Device: integrates the computational logic using l-
IO APIs and executes all the requests in the device runtime.

• (lll) l-IO: integrates the computational logic using l-IO
APIs and leaves the l-IO request scheduler to dispatch
between the kernel and the device dynamically.

The first three IO modes (B, I, M) correspond to common ap-
proaches that use vanilla IO. (D) l-IO Device corresponds to
existing device-only ISC frameworks, e.g. Biscuit, INSIDER,
MetalFS, BlockNDP [25–27, 55].
Warmup. We run experiments in two caching settings to
examine the performance of l-IO, 1) without warmup: drop
the page cache before each execution, 2) with warmup: read
the input/output file sequentially via Buffer IO, to warm up
the page cache before each execution.

With warmup, we simulate the host-side cache state in
practice and evaluate the performance of l-IO in this scenario.
After the warmup, partial data resides in the page cache while
the rest is in the device if the input/output file is larger than
the page cache. In real-time data analysis systems such as
OLAP databases, the application continues producing data
and storing it. Thus, the host-side cache always stores the
latest part of the data. Meanwhile, the analytical application
runs periodically to process the data in the recent period,
where partial data resides in the cache while others have been
flushed to the device.

5.2 Single Application
We compare the execution time of applications running singly
in six IO modes. Figure 4 reports the results.

For further analysis, we break down execution time to three
parts, IO, computation, and other. ∂ IO time means the time
of reading/writing the file. In (B) Buffer IO and (I) Direct IO,
it is the time of pread/pwrite. In (M) Mmap, the read time
is included in computation, because the application retrieves
data implicitly via page faults. In (K) l-IO Kernel, it is the
time of reading/writing data via the VFS. In (D) l-IO Device,
it is the time of transferring data between the storage media
and the device controller memory. In (l) l-IO, it is the sum
of IO time of requests, whether they execute in the host or
the device. ∑ Computation time contains the calculation part
of the application, along with memory access time. ∏ Other
time is the remaining part excluding IO and computation.

354 21st USENIX Conference on File and Storage Technologies USENIX Association

E
xe

cu
tio

n
Ti

m
e

(s
)

IO
Computation
Other

Stats64 Stats32 KNN Grep Bitmap

(a) w/o warmup

(b) w/ warmup
B I MKD λ B I MKD λ B I MKD λ B I MKD λ B I MKD λ

0

5

10

15

20

25

0

5

10

15

20

25

B I MKD λ B I MKD λ B I MKD λ B I MKD λ B I MKD λ

Figure 4: Performance of Applications Running Alone. B:
Buffer IO, I: Direct IO, M: Mmap, K: l-IO Kernel, D: l-IO
Device, lll: l-IO.

1) l-IO Device vs. vanilla IO. We choose Buffer IO to com-
pare with l-IO Device first, as it is the default operation mode
of vanilla IO. We analyze the performance without warmup.
In-storage computing improves the overall performance of
Stats64, KNN, Grep, and Bitmap by 23.24%, 10.82%, 87.13%,
and 60.15% against Buffer IO respectively. This is because
applications running in the host are bounded by IO, which
takes up more than 92.04% of execution time. For a normal
read, data is transferred from the storage media to the de-
vice controller memory and then to the host software stack,
as a normal SSD does. In contrast, IO time in l-IO Device
occupies less than 25.29%, because loading data inside the
device avoids transferring to the host and going through the
software stack. After the data is read to the device controller
memory, device processors enjoy higher internal bandwidth
to access data. Moreover, the computational logic outputs
a smaller amount of data than the input file data, reducing
the data transfer overhead to the host. Write (Bitmap) works
similarly, except for the reversed direction.

The performance with warmup is close to that without
warmup. This is because the host memory is 16GB in size, and
the page cache capacity is just smaller than the dataset. After
the warmup, all the input file is cached inside the page cache,
except the beginning part. As the application runs again, it
still accesses data from the very beginning. The beginning
part misses in the page cache and evicts other pages, which
leads to more and more cache misses. Finally, the page cache
fails to buffer any data in fact.

One might note that other time of l-IO Device is relatively
large, as illustrated in Figure 4. This is because the host issues
requests with 8 threads, while the device only has 4 threads
to process. So a request has to pend in the queue and wait

for the completion of previous requests. But request pending
and waiting actually exist in all modes. For example in Buffer
IO, in the progress of pread/pwrite, IO requests also pend
and wait in queues throughout the IO stack. The overhead is
included in the IO time.

l-IO Device does not always outperform vanilla IO, e.g.
on Stats32. l-IO Device consumes 6.65⇥ computation time
against l-IO Kernel on Stats32. We examine the generated
native machine code of Stats32 and find that eBPF does not
support 32-bit integers well. Specifically, eBPF programs
use 64-bit registers even for 32-bit integers in Stats32. It
introduces a pair of left and right shift instructions to clear the
upper 32 bits of registers. This mechanism induces significant
overhead in the device processors. We leave optimization of
supporting 32-bit integers for future work.
2) l-IO Kernel vs. vanilla IO. l-IO Kernel executes the
computational logic in the host kernel and exhibits similar
performance against Buffer IO. We look deeper into the time
breakdown of l-IO Kernel. It takes slightly more time to
compute, since sBPF incurs overhead compared to the native
ISA. Oppositely, l-IO Kernel reduces data copy from the
kernel page cache to the userspace buffer. These two aspects
together result in similar performance to Buffer IO.

We further examine three vanilla IO modes. As shown in
Figure 4, Buffer IO performs the best. Direct IO is slower,
as it bypasses the page cache and therefore misses the op-
portunity of readahead. We note that computation takes up
almost all the execution time in Mmap on read applications.
It is because the computational logic accepts the mmaped
virtual memory address and loads data from the file system
via user-agnostic page faults. Page fault handling in the kernel
induces high overhead [59], so leads Mmap to the slowest
mode. Different from read applications, Bitmap still spends
time on IO, because it writes the mapped data via msync.
3) l-IO modes. The rightmost bars in Figure 4 present the
performance of l-IO modes. Without warmup, the execution
time of l-IO is almost the minimum value of l-IO Kernel
and l-IO Device on all applications, although the dispatcher
introduces less than 4.98% overhead.

With warmup, l-IO improves more significantly. Stats64,
KNN, and Grep are 2.19⇥, 2.71⇥, 5.12⇥ faster than Buffer
IO. l-IO is faster than both l-IO Kernel and l-IO Device.
When the application accesses the beginning part of the file,
the l-IO request dispatcher finds that the device processes
faster. It thus submits these requests to the device and keeps
the page cache untouched. As the beginning part passes, the
rest file data is buffered in the page cache. Then the dis-
patcher detects the kernel is better and submits requests. In
this way, l-IO takes full advantage of both the kernel and the
device, achieving the best performance. The write application,
Bitmap, does not gain extra benefits from warmup, compared
to the performance without warmup. As we need to synchro-
nize the data to the device after writing, it always finishes
faster in the device side.

USENIX Association 21st USENIX Conference on File and Storage Technologies 355

S
ta

ts
64

S
ta

ts
32

K
N

N

G
re

p

B
itm

ap

(a) w/o warmup (b) w/ warmup

1.69 1.13 1.49 1.21

1.21 1.04 1.19 1.07

1.12 1.35 1.45 1.16

1.98 2.19 1.97 1.59

1.58 1.96 1.56 1.72

1.66 1.13 1.51 1.21

1.23 1.05 1.20 1.14

1.13 1.32 1.45 1.17

1.92 2.02 1.91 1.44

1.57 1.96 1.56 1.80

2.07 0.97 0.94 0.95

1.94 1.73 1.61 1.63

0.97 1.63 0.96 0.96

0.96 1.22 0.97 0.94

0.97 1.54 0.99 0.95

1.0 1.5 2.0 2.5

App-A

A
pp

-B

S
ta

ts
64

S
ta

ts
32

K
N

N

G
re

p

B
itm

ap

Bitmap

Grep

KNN

Stats32

Stats64

Bitmap

Grep

KNN

Stats32

Stats64

1.86 1.67 2.14 1.41

1.26 1.22 1.24 1.06

1.64 1.69 2.13 1.36

3.14 2.95 2.77 2.31

1.69 2.04 1.72 1.98

1.78 1.66 2.16 1.42

1.28 1.24 1.25 1.19

1.65 1.66 2.14 1.39

3.07 2.78 2.66 1.99

1.69 1.95 1.71 2.05

2.42 1.41 1.33 1.09

2.00 2.01 1.66 1.61

1.38 2.11 1.39 1.10

1.50 1.69 1.31 1.32

1.02 1.54 1.05 1.08

Bitmap

Grep

KNN

Stats32

Stats64

vs. Buffer IO
vs. λ

-IO
 K

ernel
vs. λ

-IO
 D

evice

Figure 5: Speedup of Running Applications Concurrently in l-
IO Mode. App-A and App-B are two collocated applications.
Digits denote the speedup of App-A running in l-IO against
Buffer IO, l-IO Kernel, and l-IO Device.

The results demonstrate that l-IO dispatches requests ef-
fectively and efficiently. Moreover, l-IO yields better perfor-
mance than kernel-only and device-only ISC approaches for
read applications running with warmup.

5.3 Collocated Applications
We evaluate executing collocated applications concurrently,
to present how l-IO works in this scenario.

With five applications, we have ten combinations of two
different applications. For a combination, we run two appli-
cations concurrently, each with 4 threads and its own 16GB
dataset. We evaluate the combination in Buffer IO, l-IO Ker-
nel, l-IO Device, and l-IO modes. Then we measure execu-
tion time of each application and calculate the speedup of
each application in the l-IO mode against other three modes.
We draw results of all combinations in Figure 5, where digits
mean the speedup of App-A.

For better understanding the figure, we take two digits 1.21
and 1.69 in the top left corner of subfigure (a) as an example.
We run Stats32 and Stats64 concurrently in l-IO mode. Com-

pared to run them concurrently in Buffer IO mode, Stats32
and Stats64 complete 1.21⇥ and 1.69⇥ faster respectively.

As we evaluate in §5.2, Stats64, KNN, Grep, and Bitmap
run faster in the device. We classify results of Figure 5(a)
into two categories according to whether chosen applications
both run faster in the device. 1) When Stats32 is chosen, l-IO
speeds up both applications by up to 2.19⇥ compared to other
three modes. This is because l-IO dispatches Stats32 to the
host and the other (Stats64, KNN, Grep, or Bitmap) to the
device, so as to exploit both sides. 2) Otherwise when Stats32
is not chosen, l-IO outperforms Buffer IO and l-IO Kernel
by up to 1.98⇥, because l-IO executes them in the faster
device side. Compared to l-IO Device, l-IO introduces less
than 5.64% dispatching overhead. As shown in Figure 5.3(b),
the speedup with warmup is higher than that without warmup,
because the dispatcher is aware of the page cache.

Since collocated applications run different computational
functions (l) on different dataset files (file_Path), l-IO es-
timates the execution time of their requests and dispatches
separately (§3.4). Based on the design, l-IO can dispatch
collocated applications effectively and efficiently, as demon-
strated in this experiment.

5.4 Sensitivity Analysis
5.4.1 Dataset Size
We evaluate the impacts of the dataset size on the performance
with warmup. We take Stats64 as an example due to space
limitation. Figure 6 reports the results in six modes with
varying dataset sizes. We categorize them into three types,
less than (8GB), approximately equal to (16GB), and greater
than (24GB, 32GB, and 40GB) the page cache capacity.

IO Computation Other

8GB 16GB 24GB 32GB 40GB

0
1
2
3
4
5

B I M K D λ

E
xe

cu
tio

n
Ti

m
e

(s
) IO

Computation
Other

0

10

20

30

B I M K D λ B I M K D λ B I M K D λ B I M K D λ B I M K D λ

Figure 6: Stats64 Performance with Varying Dataset Sizes.

Dataset size < page cache capacity. Recall that the host
memory is 16GB in our testbed, so the 8GB dataset fully
resides in the page cache after the warmup run. The host does
not have to read the data from the device, getting rid of the
peripheral IO bottleneck. Direct IO still bypasses the page
cache and loads data from the device, so it is significantly
slower. The device has wimpier processors than the host, so
l-IO Device exhibits lower performance. l-IO performance
is close to l-IO Kernel, which again proves the effectiveness
of dynamic dispatching.
Dataset size ⇡ page cache capacity. The page cache capacity
is just narrower than the host memory 16GB size, as running

356 21st USENIX Conference on File and Storage Technologies USENIX Association

E
xe

cu
tio

n
Ti

m
e

(s
) IO

Computation
Other

Stats64 Stats32 KNN Grep Bitmap

0

5

10

15

20

B I MKD λ B I MKD λ B I MKD λ B I MKD λ B I MKD λ

Figure 7: Performance with Random Warmup.

(b)

5

10

15

20

25

5 10 20 50 100 200

Ex
ec

ut
io

n
Ti

m
e

(s
)

Stats64-w/o warmup
Bitmap-w/o warmup

Stats64-w/ warmup
Bitmap-w/ warmup

(a)

0
2
4
6
8

10

50 100 200 500 1000
Profiling LengthProfiling Period

Figure 8: Performance with Varying Profiling Periods and
Profiling Lengths.

programs occupy a fraction of space. This setting is the same
as §5.2. The host-side page cache takes little effect and l-IO
exploits both the host kernel and the device simultaneously.
Dataset size > page cache capacity. When the dataset size
exceeds page cache capacity, a fixed size of data is cached
after the warmup. l-IO performs better than the other five
modes by 1.28⇥ to 1.60⇥ because it dispatches requests to
both sides efficiently.

5.4.2 Warmup
We evaluate the impacts of the warmup approach on perfor-
mance. As we state in §5.1, we warm up the page cache by
sequentially reading the input/output file via Buffer IO. In
this experiment, we change sequential read to random read
and show the results in Figure 7.

Compared to results in Figure 4, Buffer IO performs better.
After warmup by random read, random parts of the dataset file
are in the page cache. During the execution, the application
accesses the dataset file sequentially, so it can access partial
data quickly when that part of the data is in the page cache.
Nevertheless, l-IO can still outperform Buffer IO by 4.05⇥.
Dynamic request dispatching of l-IO works effectively and
efficiently, no matter how the warmup is taken.

5.4.3 Profiling Period and Profiling Length
Figure 8 depicts the performance with varying profiling peri-
ods and lengths. We choose Stats64 and Bitmap as the repre-
sentative of read and write applications. When the profiling
period becomes larger, the execution time decreases as l-IO
profiles fewer requests. The execution time remains stable
when the profiling period is over 200, as the profiling and dis-

Thread Count

10

20

30

1 2 4 8

Ex
ec

ut
io

n
Ti

m
e

(s
)

Buffer IO
Direct IO

Mmap
λ-IO Kernel

λ-IO Device
λ-IO

Buffer Size

8

10

12

1MB 2MB 4MB 8MB16MB

(a) (b)

Figure 9: Stats64 Performance with Varying (a) Buffer Sizes
and (b) Thread Counts.

patching overhead is small enough. So we choose 200 as the
default value of the profiling period because a small period
leads to a quick response to the status.

When the profiling length goes up, the execution time in-
creases significantly. With a profiling length of 200, l-IO pro-
files all the requests and submits them to both the kernel and
the device. We choose 5 as the default value of the profiling
length. We calculate the average by removing the maximum
and minimum values, to avoid accidental measurement errors.

5.4.4 Buffer Size
Figure 9(a) illustrates the performance of the Stats64 applica-
tion with different data buffer sizes in each iteration. Most IO
modes stay stable when the buffer size varies. Direct IO runs
faster as the buffer size surpasses 4MB. Buffer IO and l-IO
Kernel perform almost the same, as in previous experiments.

5.4.5 Thread Count
Figure 9(b) plots the execution time of the Stats64 application
with different number of host threads. Most IO modes execute
faster when the number of threads grows up. Mmap rarely
improves as using 1 thread reaches the top performance. The
performance of l-IO Device mode scales linearly from 1
thread to 4 threads. For all IO modes, 4 threads are enough to
exploit the performance potential although the host CPU has
8 hyperthreads.

5.5 Overhead of sBPF
In this experiment, we evaluate the overhead of sBPF against
eBPF. We choose two representative applications Stats64 and
Stats32, because they run faster in the host and the device
separately. We compare computation and total execution time
in 8 settings, as shown in Table 4.
Settings. Eight settings are divided into two groups, kernel
and device. We compile the computational logic to eBPF/s-
BPF programs. Two eBPF settings in the table mean running
the bytecode by the eBPF verifier and JITer. We disable loop
and pointer verifications to test the bare performance. DL
checks dynamic-length loops on the basis of eBPF. DL+HF
checks pointer access by helper functions on top of DL. We
add two bpf helper functions for pointer read and write to
the input and output buffers. All the input and output buffer

USENIX Association 21st USENIX Conference on File and Storage Technologies 357

Setting Stats64 Stats32
Compute (s) Total (s) Compute (s) Total (s)

Kernel

eBPF 0.84 9.06 1.38 9.08
DL 0.86 9.06 1.41 9.16
DL+HF 3.99 9.47 9.19 14.15
sBPF 0.99 9.06 1.60 9.12

Device

eBPF 2.39 6.38 8.64 18.75
DL 2.64 6.84 9.04 19.54
DL+HF 11.82 25.11 31.99 65.45
sBPF 2.94 7.34 10.27 22.02

Table 4: Performance on eBPF and sBPF. DL: eBPF with
checking Dynamic-length Loops. DL+HF: eBPF with check-
ing Dynamic-length Loop and checking memory access by
Helper Functions.

Q6 Q12 Q14 Q15 Q19

E
xe

cu
tio

n
Ti

m
e

(s
)

IO Computation Other Spark

(a) IO Intensive

0

10

20

30

40

50

BKDλ BKDλ BKDλ BKDλ BKDλ

Q1 Q3 Q4 Q7 Q20

(b) CPU Intensive

0

5

10

15
50

100
150

BKDλ BKDλ BKDλ BKDλ BKDλ

(b) CPU Intensive

Figure 10: TPC-H Performance w/o Warmup. B: Buffer IO,
K: l-IO Kernel, D: l-IO Device, lll: l-IO. Qi: query i.

pointer accesses in the computational logic are modified to
use helper functions. sBPF is the default setting used in all
the other experiments. It combines dynamic loop and pointer
access as we describe in §3.3.
Results. Table 4 depicts the results in 8 settings. Comparing
the results of eBPF and sBPF settings, we find that the loop
check induces at most 2.44% and 10.09% overhead in the host
kernel and the device. Together with the pointer check, sBPF
adds no more than 16.96% and 22.68% computation time
in two sides respectively. The total execution time is almost
unchanged in the host, and increases by 15.14% - 17.44%
in the device. The results of UL+HF settings are notable.
It expands computation time by up to 6.67⇥ and 4.93⇥ in
two sides and slows down the total execution time seriously.
The results demonstrate that loop and pointer checks of sBPF
come at an acceptable cost.

5.6 Case Study: Spark SQL
In this experiment, we port a real application, Spark SQL [10],
to l-IO and evaluate its end-to-end performance with TPC-
H [11]. Spark SQL is a prevalent SQL application for re-
lational processing on structured data [60], as a module of
Apache Spark. Spark SQL follows the schema of reading and
processing data, so that it offers the opportunity of offload-
ing computational logic to read via l-IO. For an SQL query,
Spark SQL first parses the query, constructs JAVA source code
for processing data, and generates JAVA bytecode for later
execution. Afterward, Spark SQL executes in two steps, 1)

Q6 Q12 Q14 Q15 Q19

E
xe

cu
tio

n
Ti

m
e

(s
)

IO Computation Other Spark

(a) IO Intensive

0

10

20

30

40

50

BKDλ BKDλ BKDλ BKDλ BKDλ

Q1 Q3 Q4 Q7 Q20

(b) CPU Intensive

0

5

10

15
50

100
150

BKDλ BKDλ BKDλ BKDλ BKDλ

(b) CPU Intensive

Figure 11: TPC-H Performance w/ Warmup.

reads data from files, and 2) executes the JAVA bytecode to
process input data and returns results. Thus, we can extract
part of processing logic in the JAVA source code and integrate
it into the first-step read via l-IO.
Workloads. TPC-H is a widely-used OLAP benchmark [11]
that defines a dataset of 8 tables and 22 SQL queries.
We generate a 41.6GB dataset with a scale factor of 40.
Three largest tables, LINEITEM, ORDERS, and PARTSUPP are
28.61GB (68.77%), 6.58GB (15.84%), and 4.53 GB (10.88%)
in size respectively, together taking up 95.49% space of the
whole dataset. We equip the host with 32GB of physical mem-
ory, which is still smaller than the dataset size. As for queries,
we classify them into two categories, IO intensive and CPU
intensive. We show 5 queries of each category due to the
paper space limitation. They cover various SQL operations of
projection, selection, aggregation, join, subquery, etc.

We focus on the largest table LINEITEM in this experiment,
as all the 10 queries retrieve data from it. We add a prepro-
cessing module between Spark SQL and l-IO. For a SQL
query, we extract filter logic (projection and selection) of
LINEITEM from generated JAVA source code, convert it to C
code, and integrate it to read in the preprocessing module. In
this way, the execution progress finishes in two steps. 1) The
preprocessing module reads file data and filters. 2) Spark SQL
retrieves filtered data from the preprocessing module, further
processes (e.g. aggregation, join), and returns results in the
Spark environment. The filter logic of every query has less
than 50 LoC and thus the porting overhead is low.
Comparing targets. We implement and run the preprocessing
module in four modes, Buffer IO (B), l-IO Kernel (K), l-
IO Device (D), and l-IO (l). In the Buffer IO mode, the
preprocessing module reads file data via pread and runs the
filter logic of projection and selection totally in the userspace.
In the other three modes, the processing module integrates
filter logic into read via pread_l of l-IO. We do not present
the performance of the unmodified Spark SQL in the paper,
as it is always slower than our modified Spark SQL with
the preprocessing module, and instead, we use the Buffer IO
mode as the baseline for fairness.
Results. Figure 10 and Figure 11 report experimental results
without and with warmup. We warm up by reading the dataset
sequentially before each execution, as we state in §5.1. As
we mention in the settings above, the modified Spark SQL

358 21st USENIX Conference on File and Storage Technologies USENIX Association

executes a SQL query in two steps, first in the preprocessing
module and then in the Spark environment. We divide time in
the preprocessing module into three parts of IO, computation,
and other, as in Figure 4. Plus time in Spark, we break down
end-to-end execution time into four parts in the figures.

Figure 10(a) shows the performance of IO intensive queries
without warmup. In these queries, IO occupies 27.02% –
60.41% of end-to-end execution time in the Buffer IO mode.
The execution time of l-IO Kernel is similar to Buffer IO,
like in previous experiments. l-IO dispatches requests to
the device efficiently and reduces preprocessing time (IO +
computation + other) by up to 81.85% against Buffer IO. Ac-
cording to our statistics, the preprocessing module reduces the
input data size to only 0.59% – 6.75%. Taking Spark time and
scheduling overhead into account, l-IO outperforms Buffer
IO by 8.56% – 31.58%. l-IO accelerates the end-to-end exe-
cution time of Spark SQL on IO intensive queries.

Figure 11(a) reports the performance with warmup. The
dataset is larger than the page cache. We focus on the exe-
cution time of l-IO. It performs faster than Buffer IO, l-IO
Kernel, and l-IO Device by up to 2.15⇥, 2.16⇥, and 1.51⇥
respectively. We also evaluate on a 20.8GB dataset (Scale
Factor=20). With all data cached in the host, l-IO Kernel is
faster than l-IO Device by 9.16% – 35.56%. l-IO dispatches
requests to the kernel with less than 2.98% overhead. These
demonstrate the effectiveness of l-IO dispatching.

Figure 10(b) and Figure 11(b) show performance of CPU
intensive queries. l-IO Kernel performs similarly to Buffer
IO. Preprocessing time of Q20 in l-IO Device is 16.28%
less than l-IO Kernel, where the row selectivity 15.1% is
as low as IO-intensive queries. But for Q1, Q3, Q4 and Q7,
preprocessing in the l-IO Kernel is faster than l-IO Device by
up to 18.45%. This is because they select 30.3% – 98.5% rows,
much higher than IO intensive queries. The device copies
and returns more data and becomes less effecient than the
host. Even though preprocessing is faster either in the host or
the device, l-IO chooses the faster side for all the 5 queries.
The key difference from IO intensive queries is that Spark
occupies dominant part, more than 87.48% of execution time.
Therefore, the end-to-end execution time of all modes does
not differ significantly.

In summary, taking Spark SQL as an example, real appli-
cations can benefit from l-IO.

6 Related Work

In-storage computing (ISC) in the storage device originates in
the disk era [4,12] and revives with the advent of SSDs [5,13].
We classify recent works into two categories, case study and
general framework. Case study works accelerate a specific
application or system by ISC, such as SQL [15, 61, 62], big
data [14], graph [16, 17, 49], file system [22, 29, 63], and data
training [18,19,64]. General ISC frameworks target offloading
user-defined computational logic [23–27,55] and are closer to

ours. As we state before, existing ISC frameworks mostly fo-
cus on providing manipulation interfaces in the userspace and
accelerating computation in the device, but l-IO redesigns
the IO stack to support offloading computation. We discuss
two works in more detail. Summarizer [24] proposes an au-
tomatic dispatching approach to saturate the device first, but
does not consider many factors affecting the execution time
in both sides. l-IO takes many factors into consideration, and
proposes profiling-based dynamic dispatching to designate
requests. MetalFS [26] integrates into Linux as a file system
driver, it only offloads computation to the FPGA device, with-
out utilizing the host computation resources. l-IO employs
dynamic dispatching to exploit both sides.

As the network system continues delving into eBPF [35,
37], it also gains increasing attention in the storage sys-
tem [29], especially ISC researches [31–34]. ExtFuse [29]
accelerates file systems by embedding specialized request
handlers into the kernel. Kourtis et al. [31] propose pushing
computation to the disaggregated storage device, in order to
avoid multiple network roundtrips. As the first one targets
a specific acceleration, other ISC works make preliminary
exploration and envision of bringing eBPF to in-storage com-
puting. Zhong et al. [30,65] focus on pointer-chasing storage
functions, e.g. a chain of IO requests, and aim to resubmit
them in a lower layer of the host kernel to alleviate software
stack overhead. But they do not pay enough attention to data
computation inside one IO or offloading computation to com-
putational storage devices. l-IO analyzes and identifies two
critical limitations that render eBPF inapplicable to general
ISC. Responding to this issue, l-IO proposes sBPF to break
the limitations. Moreover, we build l-IO on the full-stack
software and hardware environment, not only the host side.

7 Conclusion

In this paper, we present l-IO, which extends Linux IO to
enable offloading computation to both the host kernel and the
device. It carries and executes a user-defined computational
logic during data transfer. We implement l-IO in the full-stack
and real software and hardware environment, and evaluate it
with synthetic and real applications against vanilla Linux IO,
showing significant performance improvement.

Acknowledgments

We sincerely thank our shepherd Alex Conway for helping us
improve the paper. We also thank the anonymous reviewers
for their feedback. This work is supported by the National
Key R&D Program of China (Grant No. 2021YFB0300500),
the National Natural Science Foundation of China (Grant No.
61832011, 62022051, & 62202255), and Huawei.

USENIX Association 21st USENIX Conference on File and Storage Technologies 359

References

[1] Sang-Woo Jun, Ming Liu, Sungjin Lee, Jamey Hicks,
John Ankcorn, Myron King, Shuotao Xu, and Arvind.
Bluedbm: An appliance for big data analytics.
SIGARCH Comput. Archit. News, 43(3S):1–13, jun
2015.

[2] SmartSSD - Samsung Semiconductor. https://

samsungsemiconductor-us.com/smartssd/.

[3] Computaional Storage | SNIA. https://www.snia.

org/computational.

[4] Anurag Acharya, Mustafa Uysal, and Joel Saltz. Active
disks: Programming model, algorithms and evaluation.
SIGPLAN Not., 33(11):81–91, October 1998.

[5] Devesh Tiwari, Simona Boboila, Sudharshan Vazhku-
dai, Youngjae Kim, Xiaosong Ma, Peter Desnoyers, and
Yan Solihin. Active flash: Towards energy-efficient, in-
situ data analytics on extreme-scale machines. In 11th
USENIX Conference on File and Storage Technologies
(FAST 13), pages 119–132, 2013.

[6] pread(2) — Linux manual page. https://man7.org/
linux/man-pages/man2/pread.2.html.

[7] readv(2) — Linux manual page. https://man7.org/
linux/man-pages/man2/readv.2.html.

[8] A thorough introduction to eBPF. https://lwn.net/
Articles/740157/.

[9] eBPF - Introdcution, Tutorials & Community Resources.
https://ebpf.io/.

[10] Michael Armbrust, Reynold S. Xin, Cheng Lian, Yin
Huai, Davies Liu, Joseph K. Bradley, Xiangrui Meng,
Tomer Kaftan, Michael J. Franklin, Ali Ghodsi, and
Matei Zaharia. Spark sql: Relational data processing
in spark. In Proceedings of the 2015 ACM SIGMOD
International Conference on Management of Data, SIG-
MOD ’15, page 1383–1394, New York, NY, USA, 2015.
Association for Computing Machinery.

[11] TPC-H Homepage. https://www.tpc.org/tpch/.

[12] Erik Riedel, Garth Gibson, and Christos Faloutsos. Ac-
tive storage for large-scale data mining and multimedia
applications. In Proceedings of 24th Conference on Very
Large Databases, pages 62–73. Citeseer, 1998.

[13] Sangyeun Cho, Chanik Park, Hyunok Oh, Sungchan
Kim, Youngmin Yi, and Gregory R Ganger. Active disk
meets flash: A case for intelligent ssds. In Proceedings
of the 27th international ACM conference on Interna-
tional conference on supercomputing, pages 91–102,
2013.

[14] Yangwook Kang, Yang-suk Kee, Ethan L Miller, and
Chanik Park. Enabling cost-effective data processing
with smart ssd. In 2013 IEEE 29th symposium on mass
storage systems and technologies (MSST), pages 1–12.
IEEE, 2013.

[15] Insoon Jo, Duck-Ho Bae, Andre S Yoon, Jeong-Uk
Kang, Sangyeun Cho, Daniel DG Lee, and Jaeheon
Jeong. Yoursql: a high-performance database system
leveraging in-storage computing. Proceedings of the
VLDB Endowment, 9(12):924–935, 2016.

[16] Jinho Lee, Heesu Kim, Sungjoo Yoo, Kiyoung Choi,
H Peter Hofstee, Gi-Joon Nam, Mark R Nutter, and
Damir Jamsek. Extrav: boosting graph processing near
storage with a coherent accelerator. Proceedings of the
VLDB Endowment, 10(12):1706–1717, 2017.

[17] Sang-Woo Jun, Andy Wright, Sizhuo Zhang, Shuotao
Xu, and Arvind. Grafboost: Using accelerated flash stor-
age for external graph analytics. In Proceedings of the
45th Annual International Symposium on Computer Ar-
chitecture, ISCA ’18, page 411–424. IEEE Press, 2018.

[18] Shengwen Liang, Ying Wang, Youyou Lu, Zhe Yang,
Huawei Li, and Xiaowei Li. Cognitive SSD: A deep
learning engine for in-storage data retrieval. In 2019
USENIX Annual Technical Conference (USENIXATC
19), pages 395–410, 2019.

[19] Mark Wilkening, Udit Gupta, Samuel Hsia, Caroline
Trippel, Carole-Jean Wu, David Brooks, and Gu-Yeon
Wei. Recssd: Near data processing for solid state drive
based recommendation inference. In Proceedings of the
26th ACM International Conference on Architectural
Support for Programming Languages and Operating
Systems, ASPLOS 2021, page 717–729, New York, NY,
USA, 2021. Association for Computing Machinery.

[20] Xiaohao Wang, Yifan Yuan, You Zhou, Chance C. Coats,
and Jian Huang. Project almanac: A time-traveling solid-
state drive. In Proceedings of the Fourteenth EuroSys
Conference 2019, EuroSys ’19, New York, NY, USA,
2019. Association for Computing Machinery.

[21] Xuan Sun, Hu Wan, Qiao Li, Chia-Lin Yang, Tei-
Wei Kuo, and Chun Jason Xue. Rm-ssd: In-storage
computing for large-scale recommendation inference.
In 2022 IEEE International Symposium on High-
Performance Computer Architecture (HPCA), pages
1056–1070, 2022.

[22] Zhe Yang, Youyou Lu, Erci Xu, and Jiwu Shu. Coin-
purse: A device-assisted file system with dual interfaces.
In 2020 57th ACM/IEEE Design Automation Conference
(DAC), pages 1–6, 2020.

360 21st USENIX Conference on File and Storage Technologies USENIX Association

https://samsungsemiconductor-us.com/smartssd/
https://samsungsemiconductor-us.com/smartssd/
https://www.snia.org/computational
https://www.snia.org/computational
https://man7.org/linux/man-pages/man2/pread.2.html
https://man7.org/linux/man-pages/man2/pread.2.html
https://man7.org/linux/man-pages/man2/readv.2.html
https://man7.org/linux/man-pages/man2/readv.2.html
https://lwn.net/Articles/740157/
https://lwn.net/Articles/740157/
https://ebpf.io/
https://www.tpc.org/tpch/

[23] Sudharsan Seshadri, Mark Gahagan, Sundaram
Bhaskaran, Trevor Bunker, Arup De, Yanqin Jin,
Yang Liu, and Steven Swanson. Willow: A user-
programmable ssd. In Proceedings of the 11th
USENIX Conference on Operating Systems Design and
Implementation, OSDI’14, page 67–80, USA, 2014.
USENIX Association.

[24] Gunjae Koo, Kiran Kumar Matam, Te I, H. V. Kr-
ishna Giri Narra, Jing Li, Hung-Wei Tseng, Steven
Swanson, and Murali Annavaram. Summarizer: Trading
communication with computing near storage. In Pro-
ceedings of the 50th Annual IEEE/ACM International
Symposium on Microarchitecture, MICRO-50 ’17, page
219–231, New York, NY, USA, 2017. Association for
Computing Machinery.

[25] Zhenyuan Ruan, Tong He, and Jason Cong. INSIDER:
Designing in-storage computing system for emerging
high-performance drive. In 2019 USENIX Annual Tech-
nical Conference (USENIXATC 19), pages 379–394,
2019.

[26] Robert Schmid, Max Plauth, Lukas Wenzel, Felix Eber-
hardt, and Andreas Polze. Accessible near-storage com-
puting with fpgas. In Proceedings of the Fifteenth Eu-
ropean Conference on Computer Systems, EuroSys ’20,
New York, NY, USA, 2020. Association for Computing
Machinery.

[27] Antonio Barbalace, Martin Decky, Javier Picorel, and
Pramod Bhatotia. Blockndp: Block-storage near data
processing. In Proceedings of the 21st International
Middleware Conference Industrial Track, Middleware
’20, page 8–15, New York, NY, USA, 2020. Association
for Computing Machinery.

[28] Ziye Yang, James R Harris, Benjamin Walker, Daniel
Verkamp, Changpeng Liu, Cunyin Chang, Gang Cao,
Jonathan Stern, Vishal Verma, and Luse E Paul. Spdk:
A development kit to build high performance storage
applications. In 2017 IEEE International Conference on
Cloud Computing Technology and Science (CloudCom),
pages 154–161. IEEE, 2017.

[29] Ashish Bijlani and Umakishore Ramachandran. Exten-
sion framework for file systems in user space. In 2019
USENIX Annual Technical Conference (USENIXATC
19), pages 121–134, 2019.

[30] Yuhong Zhong, Hongyi Wang, Yu Jian Wu, Asaf Cidon,
Ryan Stutsman, Amy Tai, and Junfeng Yang. Bpf for
storage: an exokernel-inspired approach. In Proceedings
of the Workshop on Hot Topics in Operating Systems,
pages 128–135, 2021.

[31] Kornilios Kourtis, Animesh Trivedi, and Nikolas Ioan-
nou. Safe and efficient remote application code exe-
cution on disaggregated nvm storage with ebpf. arXiv
preprint arXiv:2002.11528, 2020.

[32] Wenjun Huang and Marcus Paradies. An evalua-
tion of webassembly and ebpf as offloading mecha-
nisms in the context of computational storage. CoRR,
abs/2111.01947, 2021.

[33] Giulia Frascaria, Animesh Trivedi, and Lin Wang. A
case for a programmable edge storage middleware.
CoRR, abs/2111.14720, 2021.

[34] Corne Lukken, Giulia Frascaria, and Animesh Trivedi.
ZCSD: a computational storage device over zoned
namespaces (ZNS) ssds. CoRR, abs/2112.00142, 2021.

[35] Marco Spaziani Brunella, Giacomo Belocchi, Marco
Bonola, Salvatore Pontarelli, Giuseppe Siracusano,
Giuseppe Bianchi, Aniello Cammarano, Alessandro
Palumbo, Luca Petrucci, and Roberto Bifulco. hxdp:
Efficient software packet processing on FPGA nics. In
14th USENIX Symposium on Operating Systems Design
and Implementation (OSDI 20), pages 973–990, 2020.

[36] eBPF Introduction - Netronome. https://www.

netronome.com/technology/ebpf/.

[37] Toke Høiland-Jørgensen, Jesper Dangaard Brouer,
Daniel Borkmann, John Fastabend, Tom Herbert, David
Ahern, and David Miller. The express data path: Fast
programmable packet processing in the operating sys-
tem kernel. In Proceedings of the 14th international
conference on emerging networking experiments and
technologies, pages 54–66, 2018.

[38] Bounded loops in BPF for the 5.3 kernel. https://

lwn.net/Articles/794934/.

[39] bpf-helpers Linux manual page. https://man7.org/
linux/man-pages/man7/bpf-helpers.7.html.

[40] filefrag(8) - linux manual page. https://man7.org/

linux/man-pages/man8/filefrag.8.html.

[41] Fiemap ioctl. https://www.kernel.org/doc/

Documentation/filesystems/fiemap.txt.

[42] fallocate(2) - linux manual page. https://man7.org/
linux/man-pages/man2/fallocate.2.html.

[43] Ian F. Adams, John Keys, and Michael P. Mesnier. Re-
specting the block interface - computational storage us-
ing virtual objects. In Proceedings of the 11th USENIX
Conference on Hot Topics in Storage and File Systems,
HotStorage’19, page 10, USA, 2019. USENIX Associa-
tion.

USENIX Association 21st USENIX Conference on File and Storage Technologies 361

https://www.netronome.com/technology/ebpf/
https://www.netronome.com/technology/ebpf/
https://lwn.net/Articles/794934/
https://lwn.net/Articles/794934/
https://man7.org/linux/man-pages/man7/bpf-helpers.7.html
https://man7.org/linux/man-pages/man7/bpf-helpers.7.html
https://man7.org/linux/man-pages/man8/filefrag.8.html
https://man7.org/linux/man-pages/man8/filefrag.8.html
https://www.kernel.org/doc/Documentation/filesystems/fiemap.txt
https://www.kernel.org/doc/Documentation/filesystems/fiemap.txt
https://man7.org/linux/man-pages/man2/fallocate.2.html
https://man7.org/linux/man-pages/man2/fallocate.2.html

[44] proc(5) - Linux manual page. https://man7.org/

linux/man-pages/man5/proc.5.html.

[45] Daisy OpenSSD Platform. https://www.crz-tech.

com/crz/article/daisy/.

[46] Jaewook Kwak, Sangjin Lee, Kibin Park, Jinwoo Jeong,
and Yong Ho Song. Cosmos+ openssd: Rapid prototype
for flash storage systems. ACM Trans. Storage, 16(3),
jul 2020.

[47] CRZ-Technology OpenSSD. https://github.com/

CRZ-Technology/OpenSSD-OpenChannelSSD.

[48] Kyuhwa Han, Hyunho Gwak, Dongkun Shin, and Jooy-
oung Hwang. Zns+: Advanced zoned namespace inter-
face for supporting in-storage zone compaction. In 15th
USENIX Symposium on Operating Systems Design and
Implementation (OSDI 21), pages 147–162, 2021.

[49] Kiran Kumar Matam, Gunjae Koo, Haipeng Zha, Hung-
Wei Tseng, and Murali Annavaram. Graphssd: graph
semantics aware ssd. In Proceedings of the 46th inter-
national symposium on computer architecture, pages
116–128, 2019.

[50] Myoungsoo Jung. Openexpress: Fully hardware auto-
mated open research framework for future fast nvme
devices. In 2020 USENIX Annual Technical Conference
(USENIXATC 20), pages 649–656, 2020.

[51] OpenExpresss Download Page. https:

//openexpress.camelab.org.

[52] NVM Express Base Specification 2.0. https:

//nvmexpress.org/wp-content/uploads/

NVM-Express-Base-Specification-2_0-2021.

06.02-Ratified-5.pdf.

[53] NVM Express NVM Command Set Specification.
https://nvmexpress.org/wp-content/uploads/

NVM-Express-NVM-Command-Set-Specification-2021.

06.02-Ratified-1.pdf.

[54] Intel Optane SSD 9 Series. https://www.

intel.com/content/www/us/en/products/

details/memory-storage/consumer-ssds/

optane-ssd-9-series.html.

[55] Boncheol Gu, Andre S. Yoon, Duck-Ho Bae, Insoon Jo,
Jinyoung Lee, Jonghyun Yoon, Jeong-Uk Kang, Moon-
sang Kwon, Chanho Yoon, Sangyeun Cho, Jaeheon
Jeong, and Duckhyun Chang. Biscuit: A framework
for near-data processing of big data workloads. In 2016
ACM/IEEE 43rd Annual International Symposium on
Computer Architecture (ISCA), pages 153–165, 2016.

[56] zainryan/INSIDER-System: An FPGA-based full-stack
in-storage computing system. https://github.com/
zainryan/INSIDER-System.

[57] HLS Pragmas. https://www.xilinx.com/

html_docs/xilinx2019_1/sdaccel_doc/

hls-pragmas-okr1504034364623.html.

[58] Vivado 2021.2 - High-Level Synthesis (C
based). https://www.xilinx.com/support/

documentation-navigation/design-hubs/

dh0012-vivado-high-level-synthesis-hub.

html.

[59] Anastasios Papagiannis, Giorgos Xanthakis, Giorgos
Saloustros, Manolis Marazakis, and Angelos Bilas. Op-
timizing memory-mapped i/o for fast storage devices. In
2020 USENIX Annual Technical Conference (USENIX-
ATC 20), pages 813–827, 2020.

[60] Spark SQL and DataFrames | Apache Spark. https:

//spark.apache.org/sql/.

[61] Jaeyoung Do, Yang-Suk Kee, Jignesh M Patel, Chanik
Park, Kwanghyun Park, and David J DeWitt. Query
processing on smart ssds: Opportunities and challenges.
In Proceedings of the 2013 ACM SIGMOD International
Conference on Management of Data, pages 1221–1230,
2013.

[62] Louis Woods, Zsolt István, and Gustavo Alonso. Ibex:
An intelligent storage engine with support for advanced
sql offloading. Proceedings of the VLDB Endowment,
7(11):963–974, 2014.

[63] Youyou Lu, Jiwu Shu, and Weimin Zheng. Extend-
ing the lifetime of flash-based storage through reduc-
ing write amplification from file systems. In Proceed-
ings of the 11th USENIX Conference on File and Stor-
age Technologies, FAST’13, page 257–270, USA, 2013.
USENIX Association.

[64] Shine Kim, Yunho Jin, Gina Sohn, Jonghyun Bae,
Tae Jun Ham, and Jae W Lee. Behemoth: A flash-centric
training accelerator for extreme-scale dnns. In 19th
USENIX Conference on File and Storage Technologies
(FAST 21), pages 371–385, 2021.

[65] Yuhong Zhong, Haoyu Li, Yu Jian Wu, Ioannis Zarkadas,
Jeffrey Tao, Evan Mesterhazy, Michael Makris, Junfeng
Yang, Amy Tai, Ryan Stutsman, and Asaf Cidon. XRP:
In-Kernel storage functions with eBPF. In 16th USENIX
Symposium on Operating Systems Design and Imple-
mentation (OSDI 22), pages 375–393, Carlsbad, CA,
July 2022. USENIX Association.

362 21st USENIX Conference on File and Storage Technologies USENIX Association

https://man7.org/linux/man-pages/man5/proc.5.html
https://man7.org/linux/man-pages/man5/proc.5.html
https://www.crz-tech.com/crz/article/daisy/
https://www.crz-tech.com/crz/article/daisy/
https://github.com/CRZ-Technology/OpenSSD-OpenChannelSSD
https://github.com/CRZ-Technology/OpenSSD-OpenChannelSSD
https://openexpress.camelab.org
https://openexpress.camelab.org
https://nvmexpress.org/wp-content/uploads/NVM-Express-Base-Specification-2_0-2021.06.02-Ratified-5.pdf
https://nvmexpress.org/wp-content/uploads/NVM-Express-Base-Specification-2_0-2021.06.02-Ratified-5.pdf
https://nvmexpress.org/wp-content/uploads/NVM-Express-Base-Specification-2_0-2021.06.02-Ratified-5.pdf
https://nvmexpress.org/wp-content/uploads/NVM-Express-Base-Specification-2_0-2021.06.02-Ratified-5.pdf
https://nvmexpress.org/wp-content/uploads/NVM-Express-NVM-Command-Set-Specification-2021.06.02-Ratified-1.pdf%20
https://nvmexpress.org/wp-content/uploads/NVM-Express-NVM-Command-Set-Specification-2021.06.02-Ratified-1.pdf%20
https://nvmexpress.org/wp-content/uploads/NVM-Express-NVM-Command-Set-Specification-2021.06.02-Ratified-1.pdf%20
https://www.intel.com/content/www/us/en/products/details/memory-storage/consumer-ssds/optane-ssd-9-series.html
https://www.intel.com/content/www/us/en/products/details/memory-storage/consumer-ssds/optane-ssd-9-series.html
https://www.intel.com/content/www/us/en/products/details/memory-storage/consumer-ssds/optane-ssd-9-series.html
https://www.intel.com/content/www/us/en/products/details/memory-storage/consumer-ssds/optane-ssd-9-series.html
https://github.com/zainryan/INSIDER-System
https://github.com/zainryan/INSIDER-System
https://www.xilinx.com/html_docs/xilinx2019_1/sdaccel_doc/hls-pragmas-okr1504034364623.html
https://www.xilinx.com/html_docs/xilinx2019_1/sdaccel_doc/hls-pragmas-okr1504034364623.html
https://www.xilinx.com/html_docs/xilinx2019_1/sdaccel_doc/hls-pragmas-okr1504034364623.html
https://www.xilinx.com/support/documentation-navigation/design-hubs/dh0012-vivado-high-level-synthesis-hub.html
https://www.xilinx.com/support/documentation-navigation/design-hubs/dh0012-vivado-high-level-synthesis-hub.html
https://www.xilinx.com/support/documentation-navigation/design-hubs/dh0012-vivado-high-level-synthesis-hub.html
https://www.xilinx.com/support/documentation-navigation/design-hubs/dh0012-vivado-high-level-synthesis-hub.html
https://spark.apache.org/sql/
https://spark.apache.org/sql/

	Introduction
	Background and Motivation
	In-Storage Computing and IO Stack
	Host-Device Coordination
	eBPF and its Limitations

	Design
	Overall Architecture
	-IO APIs and Workflow
	Cross-Platform Runtime
	Computation: Extending eBPF to sBPF
	Data: Consistent File Access

	Dynamic Request Dispatching
	Modeling Execution Time
	Periodical Profiling and Dispatching

	Implementation
	Evaluation
	Experimental Setup
	Single Application
	Collocated Applications
	Sensitivity Analysis
	Dataset Size
	Warmup
	Profiling Period and Profiling Length
	Buffer Size
	Thread Count

	Overhead of sBPF
	Case Study: Spark SQL

	Related Work
	Conclusion

