
Fast Core Scheduling with Userspace Process Abstraction
Jiazhen Lin∗†

Tsinghua University
Youmin Chen∗

Tsinghua University
Shiwei Gao

Tsinghua University
Youyou Lu‡

Tsinghua University

Abstract
We introduce uProcess, a pure userspace process abstraction
that enables CPU cores to be rescheduled among applications
at sub-microsecond timescale without trapping into the kernel.
We achieve this by constructing a special privileged mode
in userspace to achieve safe and efficient separation among
uProcesses. The core idea is a careful combination of two
emerging hardware features – userspace interrupts (Uintr)
and memory protection keys (MPK). We materialize the
uProcess abstraction by implementing Vessel, a userspace
core scheduler that colocates latency-critical and best-effort
applications with minimal switching overhead when they time-
share CPU cores. Our experiment result shows that Vessel
exhibits better overall performance and low latency when
multiple applications are colocated.

CCS Concepts: • Software and its engineering → Schedul-
ing; • Computer systems organization;

Keywords: Core Scheduling, Userspace Interrupt, Process
Management
ACM Reference Format:
Jiazhen Lin, Youmin Chen, Shiwei Gao, and Youyou Lu. 2024.
Fast Core Scheduling with Userspace Process Abstraction. In ACM
SIGOPS 30th Symposium on Operating Systems Principles (SOSP
’24), November 4–6, 2024, Austin, TX, USA. ACM, New York, NY,
USA, 16 pages. https://doi.org/10.1145/3694715.3695976

1 Introduction
Currently, 100-200 Gbps networks are widely adopted by
mainstream cloud providers [6, 18, 30, 37]; NVDIA BlueField-
3 Data Processing Unit (DPU) even enables connectivity at
up to 400 Gbps with sub-microsecond latencies [3]. Storage
vendors are also further exploring the performance limit, and
new products such as Optane memory [1], Z-NAND [5] and
memory-semantic SSDs [2] can easily deliver more than one
million operations per second (IOPS). However, the CPU
∗Both authors contributed equally to this research.
†Tsinghua University and BNRist.
‡Corresponding Author: Youyou Lu (luyouyou@tsinghua.edu.cn)

SOSP ’24, November 4–6, 2024, Austin, TX, USA
© 2024 Copyright held by the owner/author(s).
ACM ISBN 979-8-4007-1251-7/24/11
https://doi.org/10.1145/3694715.3695976

performance has remained comparatively stagnant as Moore’s
law slows and is becoming the major bottleneck.

To save CPU resources, recent systems (e.g., Pangu [37],
Snap [34], FaRM [14, 15], MICA [31], RAMCloud [40],
among others) employ kernel-bypassing to eliminate the
kernel overhead and realize bare-metal hardware performance.
They map hardware devices into userspace and extensively
use the run-to-completion (RTC) model to run the application
logic. In the meantime, cloud applications (e.g., microservices,
serverless, etc.) are typically packed into shared clusters (i.e.,
workload consolidation), enabling CPU cycles left unused by
latency-critical applications (L-apps) to be harvested by best-
effort applications (B-apps). In large-scale clouds, increasing
utilization by a few percentage points can save up to millions
of dollars [50].

However, kernel-bypassing and workload consolidation are
hard to reconcile with the existing operating system design.
Kernel-bypassing systems’ RTC model heavily relies on core
binding instead of sharing, busy-polling instead of interrupt,
so physical CPU cores are not shared among different applica-
tions and a single machine can only run very few applications.
Forcibly colocating busy-spinning threads on the same core
can lead to extremely high latencies due to the millisecond-
scale timeslice used by existing kernel scheduler [25]. Even
worse, the offered load of L-apps typically follows a bursty
arrival pattern that jitters not only over diurnally or seasonally
long timescales, but also over 𝜇𝑠-scale short intervals [39, 52].
To keep latency low, L-apps must reserve enough idle CPU
cores all the time to handle bursty requests, which, however, is
exactly contradictory to our desire for saving CPU resources.

Several recent systems like Shenango [39], Caladan [17, 35]
and Arachne [42] use userspace core schedulers to colocate
applications on the same machine. Specifically, the userspace
scheduler grants each application a dedicated set of cores,
performs load balancing across cores within an application,
and does fine-grained core reallocation between applications.
These systems achieve impressive performance compared
with the Linux scheduler. However, when serving short tasks
with an average service time of 1 - 2 𝜇s (which is typical for
datacenter applications like Memcached [9] and Redis [4]), or
densely colocating applications, they still sacrifice significant
CPU efficiency. As we will show in §2.1, colocating an L-app
with a B-app with Caladan degrades performance by up to
18% compared with running them alone, while colocating
multiple L-apps on the same core amplifies the latency by
multiple times [25, 27]. The root cause is that these systems
rely on the standard Linux process to run applications. When
switching a core between two applications, the CPU core

280

This work is licensed under a Creative Commons Attribution International 4.0 License.

https://doi.org/10.1145/3694715.3695976
https://doi.org/10.1145/3694715.3695976
https://www.acm.org/publications/policies/artifact-review-and-badging-current
https://creativecommons.org/licenses/by/4.0/
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3694715.3695976&domain=pdf&date_stamp=2024-11-15

needs to trap into the Linux kernel to switch the address space.
In Caladan, for example, switching a core involves one inter-
core communication and four user-kernel crossings. With
bursty load or dense colocation, core reallocation happens
frequently and wastes CPU cycles.

In this paper, we ask a fundamental question: is it possi-
ble to let the CPU core switch between processes directly
in userspace without violating the original semantics of the
kernel process? We show this is possible by introducing a new
process abstraction named uProcess. uProcesses are rearchi-
tected to run different applications within a single shared
memory address space; in this way, a CPU core can switch to
another uProcess by issuing jump instructions directly. While
the idea sounds intuitive, aligning uProcess semantically with
the standard Linux process abstraction is still challenging.
First, Linux processes enforce resource isolation by strictly
separating their address spaces, while uProcesses share the
address space. This is problematic since malicious or buggy
uProcesses can access and modify the whole address space
arbitrarily. Hence, we require an efficient and safe way to al-
low uProcesses to both share and isolate their address spaces.
Second, for fair scheduling, preemption is a must [17, 28] to
avoid head of line blocking: threads running within a kernel
process can be preempted flexibly through hardware timers
or inter-processor interrupts (IPIs) to avoid their long-term
occupation of cores. However, there are no such existing
mechanisms for a thread to be preempted in userspace without
trapping into the kernel.

We address the first challenge by introducing a user-level
privileged mode to enable safe address space sharing. By de-
fault, different uProcesses’ memory segments (i.e., text, data,
stack, etc.) are protected by different memory protection keys
(MPK). Switching between uProcesses requires a core to ‘trap’
into such a privileged mode through a carefully crafted call
gate, which functions similarly as the boundary between the
user and kernel space of the Linux kernel. To tackle the second
challenge, we turn to an entirely new hardware mechanism
named userspace interrupt (Uintr), which allows delivering
interrupts directly to user-level processes. Therefore, a uP-
rocess thread can either park itself actively or be preempted
passively by Uintr signals and thus enables flexible sched-
uling policies. Based on the uProcess abstraction, we build
Vessel, a pure userspace core scheduling system. Tradition-
ally, load-balancing tasks among threads within an application
(e.g., work stealing) incur much lower overhead than reallocat-
ing cores across applications, so existing scheduling policies
tend to be conservative – a core is reallocated only after it
fails to steal any work within the current application. Given
the fast core reallocation performance of uProcesses, such a
two-level scheduling policy is not necessary; instead, Vessel
assigns (preempts) cores to (from) applications by maintain-
ing a global view of CPU resources, and enforces a one-level
scheduling policy, which is approaching better CPU efficiency.

L-app

B-app

To
al

 C
P

U
 C

os
t

0

0.5

1.0

Kernel
Runtime
AppsTo

ta
l N

or
m

al
iz

ed
 T

P

0

0.5

1.0

Normalized TP of L-app
(a)

0 0.5 1.0
Normalized TP of L-app

(b)

0 0.5 1.0

Figure 1. Cost of application colocation.

We compare Vessel with Caladan [17] and other systems un-
der a variety of setups. Vessel can be used to colocate L-apps
and B-apps, densely colocate applications, and regulate mem-
ory bandwidth usage accurately between memory-intensive
workloads. Our contributions are summarized as follows.
1) We empirically study the CPU inefficiency of workload

consolidation with existing core schedulers, with an in-
depth analysis of the core reallocation overhead.

2) We introduce uProcess, a userspace process abstraction
that enables fast core reallocation without trapping into the
kernel via safe and efficient address space sharing.

3) With uProcess, we build Vessel, a userspace core scheduler
to further explore innovations in scheduling policies.

4) Our experimental results reveal that Vessel enhances CPU
efficiency when context switches happen frequently.

2 Motivation and Background
In this section, we empirically analyze the overhead of appli-
cation colocation and introduce important hardware features
we used when mitigating such overhead.

2.1 Cost of Application Colocation
We first investigate the cost of application colocation. We
perform this experiment with Caladan [17, 35], the state-of-
the-art CPU scheduler that allows applications to allocate their
dedicated resources and do fine-grained resource reallocation
between applications at 𝜇𝑠 timescale. We deploy Caladan
with the optimized scheduling policies (i.e., Delay Range)
enabled [35]. We demonstrate the overhead by colocating
an L-app, memcached [9], with a B-app that does scientific
computation [13] on one server. We measure their performance
and consumed CPU cycles by varying the load of L-apps.
For Memcached, the clients running on separate machines
issue requests to the server following a Poisson arrival process
(detailed experimental setup is given in §6.1).

Intuitively, an ideal CPU scheduler should ensure that
L-apps always have sufficient CPU cycles, and any unused
CPU cycles of L-apps should be reallocated to B-apps im-
mediately, where the reallocation itself causes zero overhead.
Hence, two applications running with an ideal scheduler

281

Kernel
Runtime
App
P999

P
99

9
La

te
nc

y
(µ

s)

0

20

40

C
P

U
 C

yc
le

s
B

re
ak

dw
on

0

0.5

1.0

of L-apps
1 2 4 8

Figure 2. Cost of dense colocation. L-apps run on a single core.

should achieve a total normalized throughput1 that remains to
be 1 as the load of the L-app varies. Unfortunately, the perfor-
mance of Caladan still has a nonnegligible gap from the ideal
one. As sketched in Figure 1a, the performance of co-located
applications running with Caladan exhibits a decline of 18%
at most in terms of the total normalized throughput as the load
of the L-app increases.

Further, we collect the number of CPU cores each applica-
tion actually consumes as the load of the L-app varies (shown
in Figure 1b). We find that up to 17% of CPU cycles are not
spent on executing the application logic, which are instead
spent in the kernel and runtime. Even at the peak throughput,
there are still CPU cycles spent on the runtime. We also per-
form the same experiment by colocating multiple L-apps on
a single CPU core (Figure 2), and observe that as the number
of colocated applications increases, the CPU cycles spent in
the kernel increase as well.

Caladan’s scheduler features a two-level approach: an idle
core first steals workload from other cores within the same
application before being reallocated to other applications.
The reason lies in that reallocating cores across applications
is time-consuming, despite Caladan introduces mechanisms
to accelerate such operations. Figure 3 depicts the whole
timeline of Caladan to perform a core reallocation. To bind a
new application task (App-B) on a CPU core, the scheduler first
issues an IPI (inter-processor interrupt) to the victim core via
an ioctl syscall to preempt its current task (e.g., App-A). On
receiving the signal, the core traps into the kernel, and issues
a SIGUSR to App-A, enabling the userspace runtime to save
the current state; then the core in the kernel switches to App-B
task by updating related kernel data structures, switching page
tables, and finally restoring to App-B. Completing the entire
operation takes an average of 5.3 𝜇𝑠, during which the target
CPU core is unable to run the application. Hence, Caladan
reallocates a core only after it fails to find any task to process
for a certain period; such a conservative policy again wastes
CPU cycles in the runtime.

2.2 User-space Interrupt
IPI is a widely used hardware feature for direct communica-
tions between CPU cores. Due to its preemption-based nature,
IPIs must be invoked and received in kernel space, which

1Defined as: 𝑇 cur
B-app/𝑇

max
B-app + 𝑇 cur

L-app/𝑇
max
L-app, where 𝑇max

∗ is the maximum
throughput each application can achieve when running alone on all cores.

0 5.3

Kernel

Sche.

ioctl() Kernel

Runtime

IPISyscall

Save
u-context

SIGUSR

2.6 3.0

ioctl()

Runtime

Kernel

Timeline (μs)

wake_up_process

schedule

…

Signal Syscall System Sched

Trap into
kernel

App AApp A App B

kProcess switch

takes 2.3 μs.

Figure 3. The timeline of core reallocation with Caladan.

inevitably incurs high overhead. Recently, Uintr is starting
to be supported in the 4th generation Intel Xeon Scalable
CPUs [11]. RISC-V privileged architecture also introduces
the "N" extension for user-level interrupts [51]. Uintr enables
two kernel threads (sender and receiver, respectively) to create
a channel with each other and send and receive interrupts
directly in userspace, achieving up to 15× lower latencies than
IPI-based signals [36]. Specifically, a Uintr receiver CPU
core holds a User Posted Interrupt Descriptor (UPID) that
stores receiver interrupt vector information and notification
state; each Uintr sender CPU core holds a User Interrupt
Target Table (UITT) that stores UPID pointers and vector
information for routing interrupts. When a sender issues a
senduipi<index>, the hardware refers to its UITT table entry
pointed by the <index> and posts the interrupt vector into the
receiver’s UPID. If the receiver is running, the sender CPU
core sends a physical IPI to it. On the receiver side, this IPI is
detected as a user interrupt, and the hardware pushes the vector
number onto the stack and directly invokes the receiver’s user
interrupt handler in the userspace without kernel trap. If the
receiver is in the kernel space or has been context-switched
out, the interrupt delivery is deferred until the receiver is
active again. To transfer the control back to the interrupted
instruction, the uiret instruction should be executed by the
receiver CPU, and the interrupted context will be restored by
hardware with the information on the stack.

2.3 Memory Protection Key
A common way to achieve memory access control relies
on syscalls like mprotect() in Linux, which modifies the
permission bits in the corresponding page table entries but
incurs high latencies. Intel memory protection key (MPK) is
an extension to enforce memory access control in userspace.
It leverages the 4-bit reserved space in each page table entry
to separate the memory space of a process into at most 16
regions and adds a new register named PKRU to each CPU core
to restrict memory access to these regions. PKRU contains 16
pairs of 2-bit permissions, each of which specifies whether
the related region is read-only, read-write, or inaccessible. A
core can manipulate its PKRU via non-privileged instructions
(e.g., WRPKRU and XRSTOR) to change its access rights to
these regions. For example, WRPKRU writes the value of the
operand register into PKRU to control the permissions. This
instruction endures low latency[49], requiring only 11 to 260

282

cycles to finish. Linux kernel also provides APIs to use MPK,
among them, pkey_alloc() enables the usage of certain keys;
pkey_mprotect() binds a memory area with the given key.

3 Challenges and Our Approach
Our overarching goal is to optimize CPU efficiency by mini-
mizing the core reallocation overhead when colocating applica-
tions. Achieving low-latency core reallocation is challenging
since all existing approaches, even the state-of-the-art (e.g.,
Caladan [17, 35], Shenango [39]), need to trap into the kernel
to accomplish privileged context switches and other tasks,
which incurs high latencies and wastes CPU cycles.

To this end, we explore a new core reallocation mechanism
that can be done purely in userspace; we make this happen
via a novel process abstraction named uProcess, which shares
the same address space with other uProcesses directly; in
this way, a core running within a uProcess can be reallocated
to another uProcess by jumping to there directly. However,
the abstraction of uProcess violates basic semantics (e.g.,
isolation of process-level resources and flexible scheduling)
of original Linux processes and requires careful treatment.
Efficient protection of the shared address space. uProcesses
require their address spaces to be shared to enable userspace
direct core reallocation, eliminating the need to switch page
tables in a privileged mode. However, using a shared address
space is problematic since a uProcess can access the whole
space arbitrarily, despite the memory region belonging to
other uProcesses. To provide similar guarantees as that of
Linux process, we require an efficient and safe way to allow
uProcesses to both share and isolate their address spaces,
which is a seemingly contradictory demand for us.
Light-weight preemption-based task scheduling. A stan-
dard operating system provides both passive (e.g., interrupts)
and active (e.g., traps) mechanisms to enable flexible schedul-
ing of processes. Userspace core schedulers can easily support
active approaches for core scheduling; in Caladan, for instance,
an application task can be scheduled whenever it parks itself
by invoking yield functions. However, to achieve preemption-
based passive scheduling, the scheduler needs to issue an IPI
signal in a privileged mode to the victim core, and the victim
core then accomplishes the scheduling in the kernel space,
which incurs high overhead.

3.1 Our Approach
Figure 4 presents a sketch of uProcess and how it interacts
with other components, including a scheduler that makes
scheduling decisions, and a manager that receives users’ com-
mands and creates and initializes uProcesses. As shown in
the figure, multiple uProcesses are grouped together into a
scheduling domain, and each application runs in a uProcess;
these uProcesses share a configured subset of CPU cores and
interact with the same scheduler and manager.

…

Cores

Apps

Unmanaged
apps/cores

Shared memory address space (MPK protected)

uProcess 1

App 1

libraries

Core 1 Core 2 Core 3

threads

uProcess N

App N

libraries

Core i Core j

threads

……

Managed apps and cores (sched. domain)

kProcess 1 kProcess 2 kProcess N…
Unmanaged

kProcesses

mmap

Runtime

Scheduler Manager

Init.Sched. (Uintr)

Figure 4. Overall architecture of uProcess.

uProcess is essentially similar to the Linux process (which
we refer to as kProcess thereafter); specifically, a uProcess is
launched by creating a dedicated kProcess beforehand, within
which a number of threads can be created and attached to CPU
cores to run application tasks. Despite these commonalities,
uProcess is designed with a different address space organi-
zation than kProcess (§4.1). Specifically, uProcesses within
the same scheduling domain use a shared memory address
space (SMAS) to accommodate their text, data, stack, and other
segments. The executable and the libraries for each uProcess
are loaded to SMAS, and different applications can run inside
different uProcesses.

To achieve efficient isolation and sharing of SMAS, uPro-
cesses’ memory segments are manipulated individually by
MPK – by default, a uProcess only has access rights to its
owned regions, while others are invisible. uProcess constructs
a special privileged mode in userspace, which corresponds
to the Linux kernel mode, to enable the safe core switching
between uProcesses. Specifically, we place a runtime region
at the end of SMAS to imitate the kernel space; the runtime
region contains the runtime code that provides privileged
function calls (similar to Linux’s syscalls) to uProcesses, and
a uProcess must use a carefully crafted call gate (§4.2) to ‘trap’
into such a privileged mode before invoking these privileged
runtime operations.

uProcess enables light-weight task preemption with Uintr,
where a CPU core running with a uProcess can be context
switched to other uProcesses directly in userspace. To achieve
this, the scheduler first issues a Uintr signal to the victim
core. Then, the victim core executes a pre-registered userspace
interrupt handler and passes through the call gate to upgrade
its privilege level; here the core can invoke privileged op-
erations and make scheduling decisions. Once decided, its
address space is switched to the region accommodating the

283

Call gate

SMAS

text data stack

Message pipe

invisibleread-only

R+W

… unusedA B runtime

exec-only

non- privileged privileged

Figure 5. Layout of the shared memory address space (SMAS).
uProcess A’s access permissions to SMAS are specified as well.

target uProcess by setting MPKs to be that of the target ap-
plication. In this way, core reallocation between uProcess
eliminates userspace-kernel crossing completely and thus
delivers extremely low core reallocation latency.

Moreover, with the uProcess abstraction, the overheads of
reallocating cores across applications and load-balancing tasks
across cores within an application (e.g., work stealing) become
similar. With this insight, we implement Vessel, an efficient
core scheduling system that enables flexible scheduling of
CPU core from a global scope (§5).

Vessel is designed to coexist inside an unmodified Linux
environment; the scheduler can be configured to manage
a subset of cores running a subset of applications, while
the Linux scheduler manages others. Moreover, Vessel also
supports managing a subset of threads within an application,
leaving others managed by the Linux scheduler.

4 uProcess Abstraction
In this section, we introduce uProcess by describing its core
components – the address space organization (§4.1), the call
gate design that enables privileged switching (§4.2), signal
handling (§4.3), and core reallocation workflow (§4.4).

4.1 Address Space and Protection
Figure 5 exhibits the address space layout of SMAS, created by
the manager and shared by all uProcesses within this schedul-
ing domain. Similar to Linux kernel’s user and kernel space
isolation, SMAS is split into non-privileged regions that corre-
spond to uProcesses (named uProcess regions) and privileged
regions (e.g., runtime and message pipe) for providing system-
level functionalities. These memory regions are managed with
different protection keys.
uProcess region is either contiguous or fragmented areas to
accommodate a uProcess’s data, stack, and others except for the
text segment (which will be described later). To safely isolate
these regions between uProcesses, each uProcess region owns
a separate memory protection key, and only the uProcess
owning this region has read and write permissions to it.
Moreover, we rely on our customized program loader and
memory allocator to manage the address space of these regions
and correctly install application programs into them (§5.2.1).
Runtime region is a special privileged memory area that
stores the runtime’s data and is invisible to all uProcesses.

The runtime provides a group of privileged operations to
uProcesses of the current scheduling domain, such as sched-
uling primitives, memory allocation, and other system-level
services (e.g., storage and networking). When a uProcess
needs to invoke these privileged operations, it must use the
call gate (a piece of code framed by a red rectangle in Figure 5)
to enter a privileged mode. In a privileged mode, the CPU
core can access the whole address space of SMAS.
Text region. The text segments of all uProcesses, call gate,
and the runtime are executable-only (neither readable nor
writable) since we do not want applications to modify their
binary code dynamically to issue illegal instructions. Specifi-
cally, the text segment of a uProcess shares the same protection
key as that of the corresponding uProcess region; meanwhile,
the permission bits in the page table entries of the text segment
are set to executable-only. This is practicable since MPK
is supplementary to the existing page permission bits and both
permissions will be checked during memory access [12].

Note that executable-only text segments can be exe-
cuted by arbitrary uProcesses; however, this is both necessary
and safe. On one hand, sharing the text region allows non-
privileged uProcesses to invoke the call gate (§4.2) directly.
On the other hand, when an application improperly jumps to
the text segments of other uProcesses or the runtime without
using the call gate, it still does not have permission to access
their data (e.g., stack, global variables, etc.), and any execution
of illegal load/store instructions will be terminated by MPK.

Yet, sharing text segments raises the following risks. ①
Data leakage. Although the data region is secured with the
MPK-based mechanism, the constant data stored in the text
region, like the immediate operand in an instruction (e.g.,
MOV %EXA 0x1234) inlined by the compiler, may contain
confidential information and leak to the context during the
execution. To mitigate the leakage, variables can be enforced
to be stored in the secured static data segment. ② Unauthorized
code execution. Although privileged functionality has been
secured, the code execution for unprivileged functionality in
a uProcess, like scientific computing, can not be completely
prohibited. However, these attacks can be mitigated with
address space layout randomization (ASLR).
Message pipe region is a special memory area that provides
a unidirectional channel for the runtime to expose necessary
information to uProcesses (e.g., the mapping of CPU cores
and threads). All uProcesses only have read permissions to it
while the runtime can both read and write it.

With the above design, one scheduling domain supports up
to 13 uProcesses/applications, where the rest keys are used by
the runtime region, and message pipe region, respectively2.
Multiple scheduling domains can be used when the number
of uProcesses exceeds this limit.

2We do not use 0 as the protection key to allow kProcess’s unmanaged
memory space other than SMAS to work as usual.

284

4.2 Call Gate
Threat Model. uProcess does not trust the application code
and the shared and static libraries it depends on. The OS
kernel, hardware, and the runtime, scheduler, and manager of
uProcess are trusted. We focus on attacks where a malicious
application tries to upgrade its privilege illegally (e.g., control-
flow hijack attacks [49]). Attacks on the security vulnerabilities
of hardware and OS are beyond the scope of this paper.
Goal. uProcesses must ‘trap’ into the privileged mode to
invoke privileged runtime operations. Hence, the call gate
should be designed to allow non-privileged uProcesses to
switch into the runtime in a legal way. The connotation of
legality here is: as long as a uProcess is in privileged mode,
it must be executing the trusted runtime code.
Existing approaches. To achieve the above goal, a basic
execution flow of a call gate works like this (see Listing 1):
set the PKRU to attain access rights to the whole SMAS (Line 3),
execute the privileged operation (Line 7), and set it back to
an application’s permission at return (Lines 10-13). However,
a malicious application can easily bypass such an execution
flow in a number of ways. One approach is using WRPKRU
instructions directly in application codes to change PKRU.
The other is control-flow hijack attack: WRPKRU uses the eax
register as its input, so a malicious application can modify
eax arbitrarily and jump directly to the WRPKRU instruction at
Line 13 to upgrade its privilege.

1 // Enter call gate
2 // Stage 1: Set PKRU to RUNTIME_KEY
3 wrpkru(RUNTIME_KEY);
4 // Stage 2: Switch stack and call runtime function
5 MOV CPUID_TO_TASK_MAP[get_cpuid()].RSP $RSP;
6 MOV $RSP CPUID_TO_RUNTIME_MAP[get_cpuid()].RSP;
7 ((func_t) (FUNC_ADDRESS)) ();
8 MOV $RSP CPUID_TO_TASK_MAP[get_cpuid()].RSP;
9 // Stage 3: Set PKRU to user app's key

10 reset_pkru:
11 userapp_pkru =
12 CPUID_TO_TASK_MAP[get_cpuid()].PKRU;
13 wrpkru(userapp_pkru);
14 // Stage 4: Check PKRU
15 userapp_pkru_check =
16 CPUID_TO_TASK_MAP[get_cpuid()].PKRU;
17 cur_pkru = rdpkru();
18 // Reset, if inconsistent (control-flow hijack)
19 if (cur_pkru != userapp_pkru_check)
20 goto reset_pkru;
21 // Leave call gate

Listing 1. uProcess call gate in pseudo-code.

Both Hodor [22] and ERIM [49] are MPK-based software
sandboxes to address the above problems. At a high level, both
systems use code inspection techniques to neutralize WRPKRU
instructions in application and library code except those used
in the call gate. They also monitor mmap and mprotect syscalls

issued by applications to prevent untrusted components from
introducing new executable code that contains illegal WRPKRU
instructions. Both systems also prevent control-flow hijack
attacks. After restoring the PKRU register at Line 13, the call
gate cannot simply return to the application code; instead,
the call gate needs to recheck if the PKRU has been updated
correctly (Lines 15 - 20). Any attack that jumps directly to
line 13 with any other value in eax would fail the check and
jump back (Lines 19 - 20).
Our approach. Despite the above efforts, however, both sys-
tems are still vulnerable to a variety of software attacks [10].
To complement this, we further introduce the following mech-
anisms to prevent potential vulnerabilities.

First, both ERIM and Hodor allow safe pages (i.e., no illegal
WRPKRU instructions) to be dynamically mapped executable
but unwritable. This, however, leaves an attack surface for ma-
licious applications to subvert memory permissions or change
code by relocation through a number of ways [10]. In our
design, all mmap, mprotect, and other memory configuration
syscalls that intend to make a memory page executable are
intercepted and prohibited. On-demand program loading and
other operations based on these syscalls can be achieved by
invoking the call gates of uProcess runtime with the corre-
sponding functionality.

Second, the WRPKRU instruction at Line 3 is immediately
followed by a runtime function call on Line 7, which cor-
responds to a privileged operation invoked by a uProcess.
However, ordinary function calls to privileged operations
raise security risks here. The non-static functions of a user’s
shared library are commonly called via the PLT (Procedure
Linkage Table). Thus, a malicious application can change
the PLT entry to point to a self-defined function; along with
the control-flow hijack attack, this application can execute
any code in privileged mode. To address this issue, we use a
static function pointer vector kept in the message pipe region
(read-only to uProcesses) to point to runtime functions; in
other words, any runtime function that can be invoked by
uProcesses should own an entry in the function pointer vector.
In this way, the call gate avoids the use of PLT by referring to
function addresses directly (a direct control transfer).

Third, to invoke a runtime function call, the return address is
pushed to the top of the stack. Hence, other threads within the
same uProcess can easily modify the return address to another
value. Once the caller thread executes a ret, it can execute
arbitrary code in a privileged mode instead of jumping back
to the next line within the call gate. We address this issue by
switching the caller thread’s stack to a stack segment within
the runtime region before invoking the runtime function
and switching it back after the return (Lines 5, 6, and 8).
Here, CPUID_TO_RUNTIME_MAP maps CPU cores to their stack
segments within the runtime region; CPUID_TO_TASK_MAP
maps CPU cores to their running tasks, which corresponds to
the contexts of their currently running threads. Both maps are
stored in the message pipe region.

285

Recall that the text segment of the call gate is executable-
only and can be invoked directly. Moreover, the call gate never
accesses data that a uProcess does not have access rights
to, which ensures that the calling uProcess can legally pass
through the call gate without being terminated by MPK.

4.3 Signal Handling
uProcess handles both Uintr- and kernel-initiated signals.

The scheduler uses Uintr signals for uProcess scheduling
(i.e., preempts a uProcess and reschedules it with a new task).
To handle Uintr signals, the runtime first registers a handler
via the uintr_register_handler() syscall and creates lock-
free FIFO queues for all CPU cores with the scheduler within
the current scheduling domain. When the scheduler performs
scheduling on a victim core, it first pushes a command into
the corresponding queue to describe the concrete scheduling
action (i.e., which new thread to run with) and then issues
a Uintr signal to this core. On receiving the signal, the
corresponding handler is invoked on this core, which further
passes through the call gate to upgrade its privilege level,
and executes the actual handling function within the runtime.
Here, the core pops the scheduling command, parses it, and
performs scheduling.

uProcess handles kernel-initiatied signals as usual, but there
are some special cases to consider. With our current design,
uProcesses can interchangeably run within different kPro-
cesses. Hence, some faulty events (e.g., memory corruption)
of one uProcess may cause unexpected termination of other
kProcesses (i.e., a bigger blast radius). It’s essential to build a
barrier between kProcesses to shield such faults. To achieve
this, we let the runtime also register fault signal (e.g., segmen-
tation fault) handlers in advance before loading uProcesses,
and handle kernel-initiated signals similarly to that of Uintr
signals. For example, when a memory fault occurs, the signal
handler receives the signal, invokes the call gate, and ‘traps’
into the runtime for signal handling. The handler first identifies
the current faulty uProcess via the CPUID_TO_TASK_MAP, and
broadcasts this signal to all CPU cores running inside this
uProcess. Here, the handling function only needs to push the
signal into FIFO queues of all related cores, instead of sending
Uintrs to them; when these cores enter a privileged mode
due to a future scheduling event, such signals will finally be
processed, and the uProcess is terminated.

4.4 Context Switch
The runtime provides two types of primitives to support
efficient core scheduling. First, using the call gate, a thread
can park itself actively whenever it fails to find new requests
or needs to be blocked (e.g., acquiring a lock, waiting for a
response, etc.). Second, we also leverage Uintr to achieve
preemption-based core scheduling. Preemption happens when
a high-priority task is blocked by a low-priority one. Both the
two primitives incur context switches of a CPU core between
different uProcesses.

uProcess A

A …

A B …

Privileged Mode

Core 1 Core 2 Core 3

 ctx swtich

Core iCore 3 Core j

uProcess B

 Upgrade
privilege level

B …

 Uintr

Sched.

Figure 6. State transition of the address space when preempt-
ing a core. The scheduler issues a Uintr to core 3 (❶); the core then
enters into the privileged mode via the call gate (❷); and switches
its address space to uProcess B’s (❸).

Figure 6 shows how a core is preempted and switched to run
another uProcess’s thread. Once the scheduler decides which
victim core to preempt, it sends a Uintr signal to this core (❶).
The victim core handles this Uintr signal within the runtime
function in a privileged mode (❷), where the core first saves
its context to the task queue, including necessary registers and
the return address (the next to be executed instruction after
returning from this function, i.e., Line 7 in Listing 1). Then,
the runtime function pops a new thread from its task queue for
execution. Here the new task corresponds to a pending thread
belonging to uProcess B, so CPUID_TO_TASK_MAP should be
updated as well to reflect the new mapping between this CPU
core and and the new thread. At this stage, the core can restore
the target thread’s context and jump to the last saved return
address (❸), which is exactly at Line 7 in Listing 1. From
here on, the core’s RSP register is restored to point to the
new thread’s stack; then, the core resets its PKRU to change its
access permission to SMAS to be identical to uProcess B’s.

4.5 Scheduler
With a fast path of userspace context switch, load balancing
within an application and core reallocation among applications
incur similar latencies. Benefiting from this, the uProcess
runtime can adopt a one-level scheduling policy to schedule
global CPU resources at a finer granularity.

As shown in Figure 7b, the runtime maintains per-core
FIFO queues to track the threads running on each core. Since
CPU cores can be switched to arbitrary applications with
low overhead, they are not affiliated to a certain application;
instead, the FIFO queue of a core contains threads of different
applications. The scheduler is responsible for balancing the
load of all cores within the current scheduling domain. We
largely reuse Caladan’s metrics (e.g., queuing delay, process-
ing time, memory bandwidth, cache miss, etc.) for determining
whether a core is overloaded.

The scheduler scans these FIFO queues repeatedly to find
overloaded cores and dispatch their tasks to other cores. At
each iteration, the scheduler performs the following steps.
First, for each overloaded core, the scheduler preempts it if the

286

Inter-app:

core reallocation

LC-app-1

C1 C2 C4

BE-app-2

C3 C4

Intra-app:

work stealing

C1 C2 C3 C4

Sched. Domain

Sched.
Load

balancingSched.

(a) Two-Level Scheduling (b) One-Level Scheduling

LC-app-1 thread

… …

BE-app-2 thread Task queue

T1poll
ctx

switchT1 T1 T1 T1

Time TimeCore 4 Core 4

Figure 7. The uProcess scheduler.

core is executing a BE thread; otherwise, pops a thread from
its FIFO queue. Second, the scheduler reassigns these threads
to underloaded cores. Note that the preempted BE threads are
put back into a global BE task queue. For each core, if the
running thread parks itself or is preempted, it performs a
context switch by suspending the current thread (i.e., saves its
context and pushes it back to the FIFO queue) and popping a
new thread from its FIFO queue for execution. When the core
does not have active threads to execute (e.g., the FIFO queue
is empty or no new request comes), it pops a BE thread from
the global queue for execution. If the global BE task queue is
empty, the core notifies the scheduler and enters an idle mode
using UMWAIT3.

Compared with the uProcess runtime, Caladan’s scheduling
policy is more conservative (see Figure 7a). In Caladan, an
idle core needs to keep stealing tasks within an application for
at least 2𝜇𝑠 before parking itself, leaving fewer opportunities
for it to be rescheduled to other applications, Moreover, Cal-
adan reallocates cores among applications every 10𝜇𝑠 since
reallocation is expensive. Instead, the runtime does not have
such restrictions and enables flexible scheduling of CPU core
from a global scope. The lower side of Figure 7 also compares
the execution timelines of a core under the two schedulers,
we can observe that the uProcess’s scheduler can fill the core
with the applications’ workloads.

5 Vessel Implementation
Vessel is a materialized implementation of the uProcess
abstraction. We currently implement Vessel to support glibc
2.34/31/27 and Linux 5.16.15. The Uintr patch provided
by Intel has not been merged into the mainstream kernel
release, so we modify the Linux kernel to accommodate this
patch. In addition to this, Vessel does not require any other
changes to the Linux kernel, In this section, we describe
Vessel’s core components and how they work together to
enable applications to run inside uProcesses and be flexibly
scheduled (see Figure 8).
3A new feature supported by Intel’s 4th Gen Xeon processors that can enter a
light-weight power state while monitoring a range of addresses.

5.1 Vessel Manager
Vessel’s manager is a standalone auxiliary program that
processes users’ commands for creating and destroying uPro-
cesses. When the manager is launched, it first creates SMAS
using the mmap() syscall and is responsible for managing the
address space of SMAS. In the runtime region, the manager
creates FIFO queues for every managed CPU core in the
current scheduling domain.

Upon receiving a uProcess creation command, the manager
first creates a kProcess with the fork() and binds it to a spec-
ified CPU core. This kProcess initially runs a special booting
program, which maps SMAS to its own virtual address space
and begins to busy-poll new commands from its own FIFO
queue. Meanwhile, the manager allocates a uProcess region
for this newly created kProcess, and uses pkey_mprotect()
and mprotect() syscalls to associate this region with proper
memory protection keys and permission bits. Then it sends
an init command to the kProcess containing necessary in-
formation (e.g., the starting address of the uProcess region,
the path name of the application’s executable file, etc.). When
the kProcess receives the init command from the queue,
it invokes the program loader within the runtime to install
and execute the real program (§5.2.1). When a user needs to
destroy an uProcess, the manager simply sends a kill com-
mand to all CPU cores running inside this uProcess. These
cores will finally terminate the uProcess when they see the
command in a privileged mode due to a future scheduling
event; meanwhile, system resources, such as the uProcess
region and CPU cores, are returned back to the manager.

5.2 Vessel Runtime
The runtime in privileged mode contains a number of im-
portant functionalities (see Figure 8), including the program
loader that installs a program’s segments to proper locations
(§5.2.1), a customized memory allocator that manages the
uProcess’s heap space (§5.2.3), and dataplane for accessing
network and storage (§5.2.4). Signal handlers have already
been illustrated in §4.3.

5.2.1 Program Loader. The program loader is responsible
for replacing a kProcess’s executable file from the original
booting program to the real application program (i.e., similar
to the exec() syscall). A standard UNIX-like loader works
with the following steps, including validation of permissions
and memory requirements, memory-mapping the executable
files into main memory following the ELF format, copying the
command-line arguments into memory, initializing registers
(e.g., RSP), and finally jumping to the program entry point.

In Vessel, we make three modifications to the standard
steps. First, in the validation phase, we perform static code
inspection to exclude any illegal use of WRPKRU instructions.
Second, before jumping to the program entry point, we should
initialize the PKRU register via the call gate to enforce memory
protection. Third, we make minor modifications to the dynamic

287

Scheduler

Manager

Runtime SMAS

Kernel

Kernel Dataplane

User Dataplane

Signal handler

Memory management

Runtime sched. backend

Program loaderThread mgmt.

Uintr

Update

C
a
ll

g
a
te

M
e
s
s
a
g
e

p
ip

e

…

Files DriversNetwork
Syscall

hook

Network

Network

Kernel sig. User sig.

Storage

Storage

…

uProcesses

Figure 8. The architecture of Vessel and basic functionalities
that the runtime supports.

linker (i.e., ld-linux.so*), which originally uses mmap()
syscall to load the shared libraries needed by a program. Since
the SMAS space is created via mmap(), we cannot map shared
libraries within the same address space; instead, we allocate
space for them via our memory allocator (§5.2.3). Note that
the text segments of the program and shared libraries reside
in the text region and should be associated with the proper
executable-only permission.

5.2.2 Thread Management. The thread implementation of
Vessel is essentially similar to Linux threads. Conceptually, a
thread is just a collection of states (registers, stack, thread-local
storage, etc.) and a CPU core operating on these states.

Vessel provides an identical thread abstraction but manages
these states completely in userspace. Specifically, when an
application invokes a pthread_create(), Vessel allocates a
dedicated stack and thread-local storage for this thread; mean-
while, we also create a context structure to track the thread’s
states. In a scheduling domain, we use CPUID_TO_TASK_MAP
to map CPU cores to their currently running threads and per-
core task queues to keep threads assigned to them. Whenever
a core is rescheduled to another thread, the suspended thread’s
context is saved, while the core is mapped to the new thread’s
context structure.

5.2.3 Memory Allocator. By sharing SMAS, different uPro-
cesses’ heaps reside in the same virtual address space, the
layout of which is incompatible with glibc’s memory allo-
cator. To this end, we use jemalloc to manage uProcess’s
heap space. By default, jemalloc uses mmap() and munmap()
syscalls as its final source of memory. We replace these calls
to use the uProcess region instead, which is already MPK-
protected when the manager creates it. Applications running
inside uProcesses are preloaded with jemalloc, and malloc
functions are intercepted and replaced to use jemalloc.

5.2.4 Kernel Syscalls. When using uProcesses to run appli-
cations, we do not recommend applications using kernel-level
file systems and other services. This is because when a CPU
core traps into the kernel, Vessel will lose control of it, which
incurs high latency and degraded performance. Moreover,
Vessel allows uProcesses to be scheduled within arbitrary
kProcesses, while the Linux kernel is completely unaware of
the uProcess abstraction, which may even raise correctness
and security issues. For example, both uProcess A and B are
scheduled to run inside kProcess A, and uProcess A creates a
file; uProcess B can open this file by performing a bruteforce
test over different file descriptors since they are essentially
part of the same kProcess (security issue). Furthermore, when
uProcess A is rescheduled again to run inside kProcess B, it
may not have permission to open the previously created file
(correctness issue). For safety reasons, Vessel only allows
the trusted runtime to execute syscall on behalf of uProcesses.
Specifically, all syscalls are intercepted and redirected to the
runtime via the call gate. The runtime creates a map to track
the created descriptors of different uProcesses, and uses this
map to enforce access control of these syscalls. For the cor-
rectness issue, the manager creates kProcesses with the same
ACL permission since the runtime has already performed
access control.

5.2.5 Userspace Networking and Storage. In addition to
supporting OS system calls, Vessel also provides kernel-
bypassing network and storage libraries for uProcesses to
communicate with remote nodes and storage devices. We
largely reuse Caladan’s network dataplane [17] and SPDK.
These dataplane libraries are placed in the runtime and we
instrument them with park() calls to avoid threads running
inside uProcesses from occupying CPU cores for too long
when they busy-spinning on completion. Moreover, the soft-
ware queues of these dataplane libraries are also exposed to
the scheduler to assist in making scheduling decisions.

5.3 Vessel and uProcess Semantics and Limitations
By comparing the life cycle of a uProcess and a Linux process,
the semantics and limitations of uProcess implemented in
Vessel are sketched as follows.
Creation: New uProcesses are created by a manager while
Linux processes are created by the kernel via standard syscalls.
For uProcess, the executable should be loaded to the SMAS,
so the position-dependent executables may cause memory
address collision. Thus, uProcess only supports application
executables and libraries compiled and linked with PIE.
Running: Applications running inside a uProcess execute
code similarly to the Linux process, except for handling
signals and syscalls. For signals, applications register signal
handlers to the uProcess runtime, and the runtime works as
a proxy that pre-registers all handlers and redirects signals
to the corresponding uProcesses. In uProcess, all syscalls
are intercepted and redirected by the runtime and processed

288

by the kernel. Due to these design choices, we recommend
applications running inside uProcess use the system-level
services of the runtime instead of kernel syscalls for efficiency.
Termination: A uProcess can be terminated by the manager
and external signals (SIGKILL/SIGTERM). The termination of
a specific thread of one uProcess is not directly supported:
the threads are managed by the userspace scheduler, and the
Linux kernel is unaware of them; one solution is to use the
sigqueue syscall with extra parameters to specify thread IDs.

Besides, uProcess’s semantics differ from Linux process in
two aspects – the uProcess fork and on-demand loading. For
the fork, the forked processes should have the same address
space layout as their parent process; however, uProcesses share
a single address space, and this causes a limitation that the
child uProcess cannot coexist in the same scheduling domain
because its address conflicts with the parent uProcess. Instead,
uProcess clones child uProcesses by creating a new SMAS and
synchronizing data; this allows the child uProcess to own an
identical address space.

For on-demand loading, the uProcess runtime exposes the
on-demand loading API like dlopen() to load new libraries
to SMAS. This requires the runtime to render the page both
non-writable and non-executable, perform code inspection,
and then mark the page executable.

6 Evaluation
Our evaluation demonstrates the benefits and quantifies the
overhead of Vessel. Specifically, it asks:
• How does Vessel compare with existing systems?
• Can Vessel maintain low latency and high CPU utilization

when densely colocating applications?
• How do the internal techniques of Vessel perform?

6.1 Experimental Setup
Platform. Our server node is equipped with two 32-core Intel
4th Gen Xeon Gold 6430 processors and 256GB of RAM
running Fedora 35 with kernel 5.16.15 (patched with Intel’s
Uintr support). We use four client nodes, each of which is
equipped with two 12-physical-core Intel Xeon E5-2650 v4
processors and 128GB of RAM running Ubuntu 18.04 with
kernel 5.4.0. These server and client nodes are connected
with the 100Gbps ConnectX-5 Mellanox network. Similar
to Caladan[17], we disable TurboBoost, CPU idle states,
CPU frequency scaling, transparent hugepages, and numa-
balancing for all the machines. By default, Vessel manages
32 hyperthreads at the server node. For a fair comparison,
we also disable CPU mitigation for the Meltdown, MDS, and
Spectre vulnerabilities, to reduce context switching costs.

Workloads. We evaluate two L-apps. First, memcached [9]
is a popular in-memory key-value store. We choose Face-
book’s USR request distribution, which has both reads and
writes with a service time of 1𝜇𝑠 on average. Second, Silo
is a scalable and efficient in-memory OLTP database [48],

and we stress it with the TPC-C request pattern. TPC-C has
high service time variability (20𝜇𝑠 at median and 280𝜇𝑠 at
99.9th percentile). All requests generated from the above
workloads follow a Poisson arrival distribution. For B-apps,
we choose both CPU- and memory-intensive workloads. A
parallel version of Linpack [13] is a float-point benchmark
that can approximate how fast a high-performance computer
performs when solving scientific computation problems. We
also implement membench, another B-app that continually re-
peats two phases, memory access and calculation, to simulate
the behavior of the current data processing applications (e.g.,
AI recommendation [38]).

Compared systems. Caladan [17] is a CPU scheduler that
reallocates cores between applications every 10𝜇s to im-
prove the CPU efficiency under bursty workloads and owns
a more scalable control plane (e.g., IOKernel). We also
compare with its optimized version (Caladan-DR-L/H) that
uses Delay Range to make a tradeoff between CPU effi-
ciency and tail latency. Arachne [42] is a user-level thread
management system that can estimate how many cores an
application needs and allocate cores between applications.
Linux’s completely fair scheduler (CFS) is a process sched-
uler that handles CPU resource allocation for executing pro-
cesses and aims to maximize overall CPU utilization. We
configure L-apps with a nice value of -19 (highest priority)
and B-apps with a nice value of 20.

6.2 Resource Efficiency
Then, we demonstrate the resource efficiency of Vessel by
first colocating one L-app and one B-app (§6.2.1). Then, we
evaluate the scheduling capability of Vessel under densely
colocated workloads (§6.2.2).

6.2.1 Core Reallocation. When colocating applications, we
choose Memcached and Silo as the L-app, and Linpack as the
B-app. We report the total normalized throughput, B-app’s
throughput, and the 99.9th percentile latency of the L-app as
we increase the load of the L-app. The experimental results
are shown in Figure 9. We make the following observations.

First, when running Linpack with Memcached (i.e., short re-
quest service time), Vessel achieves the highest peak through-
put among the evaluated systems. Specifically, at a target
99.9th percentile latency of 50𝜇𝑠, Memcached’s throughput
is 8.3% higher when running with Vessel compared to run-
ning with Caladan. With a target load at 16Mops/s, Vessel’s
P999 latency is 42.1%, 18.6%, 44.0% lower than that of Cal-
adan, Caladan-DR-L, and Caladan-DR-H, respectively. When
running with Linux CFS and Arachne, Memcached’s P999
latencies spikes to over 10ms, so we only increase the load to
1Mops/s at most for Arachne and 0.3Mops/s for Linux CFS.

Second, the total normalized throughput of Memcached
and Linpack is almost unchanged when running with Vessel
(6.6% decline on average), while Caladan shows a performance

289

Caladan Caladan-DR-L Caladan-DR-H Arachne Linux CFS Vessel

P
99

9
La

te
nc

y
(µ

s)

0

50

100

150

L-app Throughput (Mops/s)
0 5 10 15 20

P
99

9
La

te
nc

y
(µ

s)

300

600

900

L-app Throughput (Mops/s)
0 0.5

N
or

m
. B

-a
pp

Th
ro

ug
hp

ut

0

0.5

1.0

L-app Throughput (Mops/s)
0 0.5

N
or

m
. B

-a
pp

Th
ro

ug
hp

ut

0

0.5

1.0

L-app Throughput (Mops/s)
0 5 10 15 20

To
ta

l N
or

m
.

Th
ro

ug
hp

ut

0

0.5

1.0

L-app Throughput (Mops/s)
0 5 10 15 20

To
ta

l N
or

m
.

Th
ro

ug
hp

ut

0

0.5

1.0

L-app Throughput (Mops/s)
0 0.2 0.4 0.6 0.8

Figure 9. The performance of colocating an L-app and a B-app (Linpack). Top: Memcached as the L-app; bottom: Silo as the L-app.
We report the total normalized throughput, B-app’s throughput, and the P999 latency of the L-app as the load of the L-app increases. In
Caladan, DR-L indicates Delay Range 0.5-1𝜇s; DR-H indicates Delay Range 1-4𝜇s.

decline of 16.1% on average and 32.1% at most. Delay Range
makes a tradeoff between CPU efficiency and tail latency:
with a lower time threshold (i.e., DR-L), Caladan shows good
P999 latencies, but it wastes up to 18% CPU cycles; with a
higher time threshold (i.e., DR-H), Caladan achieves a similar
CPU efficiency as that of Vessel, but exhibits 79% higher
P999 latencies. We attribute the performance of Vessel to
its lightweight scheduling. On the one hand, when L-app
parks, it can switch to the next work immediately by scanning
local task queues. On the other hand, when the L-app is
busy, B-app’s core can be preempted just in time bypassing
the kernel, too. Owing to these lightweight and low-latency
scheduling strategies, CPU cycles are better utilized to run
applications. The performance of applications running inside
Arachne shows a sharp decline (40% on average) within our
provided load. Linux CFS shows good total throughput given
our provided load (from 0 to 0.3 Mops/s) but at the cost of
extremely high latencies for the L-app. We can observe that
Linux CFS always grants cores to execute B-app despite that
L-app has a higher priority. This is because Memcached’s
worker threads suspend CPU cores frequently when they wait
for network requests.

Third, when running Linpack with Silo (with service times
ranging between 20 - 280𝜇𝑠). Both Caladan and Vessel show
good total throughput, which is approaching the ideal case.
Since the overhead of processing a Silo request is much
higher, core reallocation overhead is amortized and becomes

negligible. Linux CFS shows much lower total throughput at a
low load since the low-priority B-app cannot attain enough
cores for processing.

Vessel Caladan-DR-L

(a) 1 L-app (b) 4 L-apps (c) 10 L-apps

P
99

9
La

te
nc

y
(µ

s)

0

50

100

150

0 0.2 0.4 0.6 0.8
L-app Throughput (Mops/s)

0 0.2 0.4 0.6 0.8 0 0.2 0.4 0.6 0.8

Figure 10. Performance with dense colocation. Colocating a
varying number of Memcached instances on a single core; we report
the aggregated throughput and P999 latencies.

6.2.2 Dense Colocation. We also evaluate Vessel’s per-
formance under a dense colocation scenario: we deploy an
increasing number of L-apps on a single CPU core and mea-
sure their aggregated throughput as well as the tail latency as
client nodes issue bursty requests. We create 10 client connec-
tions per application. In this experiment, we use Memcached
as the L-app and we only compare with Caladan-DR-L since
other systems show orders of magnitude higher latencies than
ours. The experimental results are exhibited in Figure 10.

290

When there is only a single application (core reallocation
between applications is not required), both Caladan-DR-L and
Vessel show very close peak throughput and tail latency (see
the left part of Figure 10). However, as we use 10 Memcached
instances, Caladan’s peak throughput declines by 25% on aver-
age and the P999 latency increases by 20% as the throughput
peaks; instead, Vessel’s aggregated throughput and tail la-
tencies are almost unchanged. When multiple latency-critical
applications are colocated, both Vessel and Caladan need
to perform context switches frequently to avoid starved ap-
plications from causing long queueing delays. However, this
inevitably incurs high overhead for Caladan since reallocation
is expensive. In Vessel, core reallocation between applica-
tions and load balancing within an application incurs a similar
overhead, so it can run 10 applications simultaneously without
showing any performance degradation.

6.3 Microbenchmarks
6.3.1 Latency of Context Switch. To measure the latency
of context switch, we bind two single-threaded applications on
the same core and let them park() themselves repeatedly. In
this way, the CPU core can switch between the two applications.
We instrument two timestamps before and after the park()
call, which are𝑇1 and𝑇2, respectively; then the context switch
latency is (𝑇2 − 𝑇1)/2. Table 1 shows the latency results.
Caladan requires 2.103 𝜇𝑠 on average and 6.461 𝜇𝑠 at 99.9th
percentile to perform a context switch, while Vessel can
achieve sub-microsecond latency. CPU cores managed by
Vessel can be efficiently switched between uProcesses since
it is achieved via pure function calls, and the core does not
need to trap into the kernel. Note that, in Caladan, the latency
of core reallocation is lower than that of core preemption
(Figure 3). In the latter case, one more time of user-kernel
crossing is required to save the application’s context.

6.3.2 Cache Friendliness. In this section, we explore the
cache thrashing issue and show that Vessel enables two
uProcesses multiplexing shared CPU cores to be more cache-
friendly. We run two applications on the same core that
randomly read and write objects with a uniform distribution.
As shown in Figure 11, Vessel reduces the cache miss rate
from Caladan’s 4.6% to around 0.0415%, and the completion
time of Vessel is 6% to 24% lower. The experimental results
show that a cache-friendly memory layout can reduce cache
conflicts when applications within a single address space run
on a single CPU.

Table 1. The latency of core reallocation (𝜇𝑠).

Avg. P50 P90 P99 P999
Vessel 0.161 0.160 0.162 0.173 0.706
Caladan 2.103 2.063 2.091 2.420 5.461

Vessel Caladan

C
om

pl
et

io
n

Ti
m

e
(N

or
m

al
iz

ed
)

0.8

1.0

C
ac

he
 M

is
s

R
at

e
(%

)

0.1

1

Object Size (Byte)
16 32 64 128 256

Figure 11. Cache friendliness evaluation. Two single-threaded
L-apps run on the same core, each of which runs an object copy.

Vessel Caladan

G
oo

dp
ut

 (M
op

s/
s)

15

20

25

of cores
32 34 36 38 40 42 44

Figure 12. Performance with different numbers of CPU cores.
Goodput represents the maximum throughput each system can achieve
within the P999 latency limit of 60 𝜇s.

6.3.3 CPU Core Scalability. One Vessel scheduling do-
main can schedule up to 42 cores in our experimental setup.
We colocate one L-app with a B-app to explore the peak
processing capacity of each system. We use the maximum
throughput that one system can achieve at the P999 latency
limit of 60 𝜇s to indicate the peak processing capacity, which
is referred to as goodput. Figure 12 demonstrates that as the
number of CPU cores increases from 32 to 42, the goodput of
Vessel rises around 25.44%. And, it reduces to 22.81% with
44 cores. In the case of Caladan, the goodput increases around
1.45% from 32 to 34 cores, and it begins to decrease, which
indicates that Caladan can scale up to 34 cores.

6.3.4 Memory Bandwidth Regulation. Vessel can reallo-
cate cores at a much finer timescale, which is also beneficial for
regulating memory bandwidth consumption of an application.
We conduct two experiments to verify this. First, both Caladan
and Vessel support using memory bandwidth consumption
as a metric for core scheduling (e.g., reduce CPU cores of
a B-app when it consumes higher memory bandwidth than
a threshold), so we colocate an L-app (Memcached) with a
memory-intensive B-app (i.e., membench) and measure their

291

Caladan
VesselTo

ta
l N

or
m

al
iz

ed
 T

P

0

0.5

1.0

Normalized TP of L-app
2 4 6 8

C
on

su
m

ed
 B

W
 (M

B
/s

)

MBA
Linux CFS
Vessel
Ideal

0

2000

4000

6000

Throttling Value (%)
0 20 40 60 80 100

Figure 13. Memory bandwidth regulation. (a) Colocating an
L-app with a memory-intensive B-app membench. (b) The accurancy
of memory bandwidth regulation.

total normalized throughput under the tail latency constraints.
As shown in Figure 13a, Vessel achieves up to 43% higher
performance than Caladan.

Second, Vessel can also be used to assign an applica-
tion fine-grained CPU quota for accurately regulating its
memory bandwidth consumption. To demonstrate its effi-
cacy, we compare Vessel with both hardware and software
approaches. Among them, Intel Memory Bandwidth Allo-
cation [21] (MBA) is a hardware approach that throttles
memory bandwidth usage by inserting delays to memory
requests. Linux cgroup works similarly to Vessel. We run the
membench workload with a single thread and use the above
approaches for bandwidth regulation. We measure the actually
consumed bandwidth of them as we change the throttling value
from 10% to 100% (see Figure 13b). Both MBA and Linux
CFS use far higher memory bandwidth than desired (i.e., low
accuracy). Instead, Vessel can accurately control memory
bandwidth usage with sub-microsecond core scheduling.

7 Related Work
Userspace core scheduler. Existing systems leverage userspace
core scheduling to handle microsecond-scale RPCs, including
Arachne [42], Shinjuku [28], Shenango [39], and Caladan [17].
Syrup [29] and ghOSt [24] allow a userspace agent to write
custom scheduling policies. These systems make timely core
reallocation decisions in userspace. However, they must sub-
mit the decision to the kernel scheduler to finish the operation,
which is less efficient than Uintr-based preemption in Vessel.

Hardware-offloaded core scheduling. Some recent stud-
ies try to offload the scheduler to SmartNICs. Shinjuku-
offload [23], Turbo [47], and Ringleader [32] use the on-board
FPGA or ARM of SmartNICs to implement load balancing
and core allocation tasks. eRSS [44] makes core reallocation
decisions on Taurus SmartNIC and delivers interrupts directly
to host CPUs. Our work is orthogonal to them and Vessel’s
centralized scheduler can be offloaded to the NIC and work
cooperatively with uProcesses.

Process abstraction. Recent work proposes new OS abstrac-
tion on top of the classical process. lwCs [33], sthread [7]
and Shreds [8] divide a POSIX process into several isolated
components to reduce the thread-scheduling overhead. In
contrast, uProcess allows application tasks to be scheduled to
run inside different processes. Junction [16] is a concurrent
work optimized for densely colocating applications. It places
multiple inter-trusted applications within a shared address
space to enable fast scheduling. Vessel does not make such
an assumption and uses MPK to allow untrusted applications
to share the address space. Nu [43] proposes the proclet that
includes heap data with runtime context and can be sched-
uled between POSIX processes and even across machines.
However, applications require refactoring and recompilation
to support the proclet. On the contrary, we do not intend to
propose a new programming model; Vessel aims to accelerate
existing applications used to run in kProcesses.

MPKs related memory protection. Previous work mainly uti-
lize MPK to achieve intra-process isolation. Both ERIM [49]
and Hodor [22] are software sandboxes that use MPK to
isolate untrusted components from trusted ones within an
application; however, they are still vulnerable to various soft-
ware attacks [10]. UnderBridge [20] isolates the components
in a microkernel to accelerate IPC data transferring. Cubi-
cleOS [45] isolates components in the system and allows
the isolated components to share data dynamically with each
other. Instead, Vessel utilizes MPK to ensure that the shared
address space can be safely isolated and efficiently shared
among uProcesses. Besides, many past works also enhanced
the ease of use of MPK [19, 41], and proposed diverse tech-
niques for safely using MPK in real cases [10, 26, 46, 49].
Vessel refers to parts of the design of these systems when
designing the call gate, syscall hook, etc.

8 Conclusion
This paper attempts to break the boundaries between tradi-
tional processes and deploying applications within the same
address space so that CPU cores can be freely switched be-
tween different applications with minimal switching overhead.
To achieve this, two new hardware features – Uintr and MPK
– are combined so that a single address space can be efficiently
shared and safely isolated. With this new process abstraction,
we implemented Vessel, a pure userspace core scheduler that
is well-compatible with existing software and shows efficiency
when time-sharing CPU cores among multiple applications.

Acknowledgement
We sincerely thank the anonymous reviewers and our shepherd
Amy Ousterhout for their comments and suggestions. This
work is supported by the National Natural Science Foundation
of China (Grant No. 62332011 and 62202255).

292

References
[1] [n. d.]. Intel Optane Memory - Responsive Memory, Accelerated

Performance. https://www.intel.com/content/www/us/en/products/
details/memory-storage/optane-memory.html.

[2] [n. d.]. Memory-Semantic SSD. https://samsungmsl.com/ms-ssd/.
[3] [n. d.]. NVIDIA BlueField Data Processing Units. https://www.nvidia.

com/en-us/networking/products/data-processing-unit/.
[4] [n. d.]. Redis. http://redis.io.
[5] [n. d.]. Ultra-Low Latency with Samsung Z-NAND SSD.

https://semiconductor.samsung.com/resources/brochure/Ultra-
LowLatencywithSamsungZ-NANDSSD.pdf.

[6] Wei Bai, Shanim Sainul Abdeen, Ankit Agrawal, Krishan Kumar Attre,
Paramvir Bahl, Ameya Bhagat, Gowri Bhaskara, Tanya Brokhman, Lei
Cao, Ahmad Cheema, Rebecca Chow, Jeff Cohen, Mahmoud Elhaddad,
Vivek Ette, Igal Figlin, Daniel Firestone, Mathew George, Ilya German,
Lakhmeet Ghai, Eric Green, Albert Greenberg, Manish Gupta, Randy
Haagens, Matthew Hendel, Ridwan Howlader, Neetha John, Julia
Johnstone, Tom Jolly, Greg Kramer, David Kruse, Ankit Kumar, Erica
Lan, Ivan Lee, Avi Levy, Marina Lipshteyn, Xin Liu, Chen Liu, Guohan
Lu, Yuemin Lu, Xiakun Lu, Vadim Makhervaks, Ulad Malashanka,
David A. Maltz, Ilias Marinos, Rohan Mehta, Sharda Murthi, Anup
Namdhari, Aaron Ogus, Jitendra Padhye, Madhav Pandya, Douglas
Phillips, Adrian Power, Suraj Puri, Shachar Raindel, Jordan Rhee,
Anthony Russo, Maneesh Sah, Ali Sheriff, Chris Sparacino, Ashutosh
Srivastava, Weixiang Sun, Nick Swanson, Fuhou Tian, Lukasz Tomczyk,
Vamsi Vadlamuri, Alec Wolman, Ying Xie, Joyce Yom, Lihua Yuan,
Yanzhao Zhang, and Brian Zill. 2023. Empowering Azure Storage with
RDMA. In 20th USENIX Symposium on Networked Systems Design
and Implementation (NSDI 23). USENIX Association, Boston, MA,
49–67. https://www.usenix.org/conference/nsdi23/presentation/bai

[7] Andrea Bittau, Petr Marchenko, Mark Handley, and Brad Karp.
2008. Wedge: Splitting Applications into Reduced-Privilege Com-
partments. In 5th USENIX Symposium on Networked Systems Design
and Implementation (NSDI 08). USENIX Association, San Francisco,
CA. https://www.usenix.org/conference/nsdi-08/wedge-splitting-
applications-reduced-privilege-compartments

[8] Yaohui Chen, Sebassujeen Reymondjohnson, Zhichuang Sun, and
Long Lu. 2016. Shreds: Fine-Grained Execution Units with Private
Memory. In 2016 IEEE Symposium on Security and Privacy (SP). 56–71.
https://doi.org/10.1109/SP.2016.12

[9] Memcached community. [n. d.]. memcached – a distributed memory ob-
ject caching system. https://lwn.net/ml/linux-kernel/20210913200132.
3396598-1-sohil.mehta@intel.com/.

[10] R. Joseph Connor, Tyler McDaniel, Jared M. Smith, and Max Schuchard.
2020. PKU Pitfalls: Attacks on PKU-based Memory Isolation
Systems. In 29th USENIX Security Symposium (USENIX Security
20). USENIX Association, 1409–1426. https://www.usenix.org/
conference/usenixsecurity20/presentation/connor

[11] Intel Corporation. [n. d.]. Intel® architecture instruction set extensions
programming reference. https://software.intel.com/content/www/us/
en/develop/articles/intel-sdm.html.

[12] Mingkai Dong, Heng Bu, Jifei Yi, Benchao Dong, and Haibo Chen. 2019.
Performance and Protection in the ZoFS User-Space NVM File System.
In Proceedings of the 27th ACM Symposium on Operating Systems
Principles (Huntsville, Ontario, Canada) (SOSP ’19). Association
for Computing Machinery, New York, NY, USA, 478–493. https:
//doi.org/10.1145/3341301.3359637

[13] Jack J Dongarra, Piotr Luszczek, and Antoine Petitet. 2003. The
LINPACK benchmark: past, present and future. Concurrency and
Computation: practice and experience 15, 9 (2003), 803–820.

[14] Aleksandar Dragojević, Dushyanth Narayanan, Orion Hodson, and
Miguel Castro. 2014. FaRM: Fast Remote Memory. In Proceedings
of the 11th USENIX Conference on Networked Systems Design and
Implementation (Seattle, WA) (NSDI’14). USENIX Association, USA,

401–414.
[15] Aleksandar Dragojević, Dushyanth Narayanan, Edmund B. Nightingale,

Matthew Renzelmann, Alex Shamis, Anirudh Badam, and Miguel Castro.
2015. No Compromises: Distributed Transactions with Consistency,
Availability, and Performance. In Proceedings of the 25th Symposium
on Operating Systems Principles (Monterey, California) (SOSP ’15).
Association for Computing Machinery, New York, NY, USA, 54–70.
https://doi.org/10.1145/2815400.2815425

[16] Joshua Fried, Gohar Irfan Chaudhry, Enrique Saurez, Esha Choukse,
Inigo Goiri, Sameh Elnikety, Rodrigo Fonseca, and Adam Belay. 2024.
Making Kernel Bypass Practical for the Cloud with Junction. In 21st
USENIX Symposium on Networked Systems Design and Implementation
(NSDI 24). USENIX Association, Santa Clara, CA, 55–73. https:
//www.usenix.org/conference/nsdi24/presentation/fried

[17] Joshua Fried, Zhenyuan Ruan, Amy Ousterhout, and Adam Belay.
2020. Caladan: Mitigating interference at microsecond timescales. In
Proceedings of the 14th USENIX Conference on Operating Systems
Design and Implementation. 281–297.

[18] Yixiao Gao, Qiang Li, Lingbo Tang, Yongqing Xi, Pengcheng Zhang,
Wenwen Peng, Bo Li, Yaohui Wu, Shaozong Liu, Lei Yan, Fei Feng,
Yan Zhuang, Fan Liu, Pan Liu, Xingkui Liu, Zhongjie Wu, Junping
Wu, Zheng Cao, Chen Tian, Jinbo Wu, Jiaji Zhu, Haiyong Wang,
Dennis Cai, and Jiesheng Wu. 2021. When Cloud Storage Meets
RDMA. In 18th USENIX Symposium on Networked Systems Design
and Implementation (NSDI 21). USENIX Association, 519–533. https:
//www.usenix.org/conference/nsdi21/presentation/gao

[19] Jinyu Gu, Hao Li, Wentai Li, Yubin Xia, and Haibo Chen. 2022. EPK:
Scalable and Efficient Memory Protection Keys. In 2022 USENIX
Annual Technical Conference (USENIX ATC 22). USENIX Association,
Carlsbad, CA, 609–624. https://www.usenix.org/conference/atc22/
presentation/gu-jinyu

[20] Jinyu Gu, Xinyue Wu, Wentai Li, Nian Liu, Zeyu Mi, Yubin Xia,
and Haibo Chen. 2020. Harmonizing Performance and Isolation in
Microkernels with Efficient Intra-kernel Isolation and Communication.
In 2020 USENIX Annual Technical Conference (USENIX ATC 20).
USENIX Association, 401–417. https://www.usenix.org/conference/
atc20/presentation/gu

[21] Part Guide. 2011. Intel® 64 and ia-32 architectures software developer’s
manual. Volume 3B: System programming Guide, Part 2, 11 (2011),
0–40.

[22] Mohammad Hedayati, Spyridoula Gravani, Ethan Johnson, John
Criswell, Michael L. Scott, Kai Shen, and Mike Marty. 2019. Hodor:
Intra-Process Isolation for High-Throughput Data Plane Libraries.
In 2019 USENIX Annual Technical Conference (USENIX ATC 19).
USENIX Association, Renton, WA, 489–504. http://www.usenix.org/
conference/atc19/presentation/hedayati-hodor

[23] Jack Tigar Humphries, Kostis Kaffes, David Mazières, and Christos
Kozyrakis. 2019. Mind the gap: A case for informed request scheduling
at the nic. In Proceedings of the 18th ACM Workshop on Hot Topics in
Networks. 60–68.

[24] Jack Tigar Humphries, Neel Natu, Ashwin Chaugule, Ofir Weisse,
Barret Rhoden, Josh Don, Luigi Rizzo, Oleg Rombakh, Paul Turner,
and Christos Kozyrakis. 2021. GhOSt: Fast & Flexible User-Space
Delegation of Linux Scheduling (SOSP ’21). Association for Computing
Machinery, New York, NY, USA, 588–604. https://doi.org/10.1145/
3477132.3483542

[25] Jaehyun Hwang, Midhul Vuppalapati, Simon Peter, and Rachit Agarwal.
2021. Rearchitecting Linux Storage Stack for µs Latency and High
Throughput. In 15th USENIX Symposium on Operating Systems Design
and Implementation (OSDI 21). USENIX Association, 113–128. https:
//www.usenix.org/conference/osdi21/presentation/hwang

[26] Intel. 2018. Intel Analysis of Speculative Execution Side Chan-
nels. https://www.intel.com/content/www/us/en/developer/
articles/technical/software-security-guidance/technical-

293

https://www.intel.com/content/www/us/en/products/details/memory-storage/optane-memory.html
https://www.intel.com/content/www/us/en/products/details/memory-storage/optane-memory.html
https://samsungmsl.com/ms-ssd/
https://www.nvidia.com/en-us/networking/products/data-processing-unit/
https://www.nvidia.com/en-us/networking/products/data-processing-unit/
http://redis.io
https://semiconductor.samsung.com/resources/brochure/Ultra-Low Latency with Samsung Z-NAND SSD.pdf
https://semiconductor.samsung.com/resources/brochure/Ultra-Low Latency with Samsung Z-NAND SSD.pdf
https://www.usenix.org/conference/nsdi23/presentation/bai
https://www.usenix.org/conference/nsdi-08/wedge-splitting-applications-reduced-privilege-compartments
https://www.usenix.org/conference/nsdi-08/wedge-splitting-applications-reduced-privilege-compartments
https://doi.org/10.1109/SP.2016.12
https://lwn.net/ml/linux-kernel/20210913200132.3396598-1-sohil.mehta@intel.com/
https://lwn.net/ml/linux-kernel/20210913200132.3396598-1-sohil.mehta@intel.com/
https://www.usenix.org/conference/usenixsecurity20/presentation/connor
https://www.usenix.org/conference/usenixsecurity20/presentation/connor
https://software.intel.com/content/www/us/en/develop/articles/intel-sdm.html
https://software.intel.com/content/www/us/en/develop/articles/intel-sdm.html
https://doi.org/10.1145/3341301.3359637
https://doi.org/10.1145/3341301.3359637
https://doi.org/10.1145/2815400.2815425
https://www.usenix.org/conference/nsdi24/presentation/fried
https://www.usenix.org/conference/nsdi24/presentation/fried
https://www.usenix.org/conference/nsdi21/presentation/gao
https://www.usenix.org/conference/nsdi21/presentation/gao
https://www.usenix.org/conference/atc22/presentation/gu-jinyu
https://www.usenix.org/conference/atc22/presentation/gu-jinyu
https://www.usenix.org/conference/atc20/presentation/gu
https://www.usenix.org/conference/atc20/presentation/gu
http://www.usenix.org/conference/atc19/presentation/hedayati-hodor
http://www.usenix.org/conference/atc19/presentation/hedayati-hodor
https://doi.org/10.1145/3477132.3483542
https://doi.org/10.1145/3477132.3483542
https://www.usenix.org/conference/osdi21/presentation/hwang
https://www.usenix.org/conference/osdi21/presentation/hwang
https://www.intel.com/content/www/us/en/developer/articles/technical/software-security-guidance/technical-documentation/analysis-speculative-execution-side-channels.html
https://www.intel.com/content/www/us/en/developer/articles/technical/software-security-guidance/technical-documentation/analysis-speculative-execution-side-channels.html

documentation/analysis-speculative-execution-side-channels.html.
[27] Weiwei Jia, Jiyuan Zhang, Jianchen Shan, Jing Li, and Xiaoning Ding.

2022. Achieving Low Latency in Public Edges by Hiding Workloads
Mutual Interference. In Proceedings of the 13th Symposium on Cloud
Computing (San Francisco, California) (SoCC ’22). Association for
Computing Machinery, New York, NY, USA, 477–492. https://doi.
org/10.1145/3542929.3563459

[28] Kostis Kaffes, Timothy Chong, Jack Tigar Humphries, Adam Belay,
David Mazières, and Christos Kozyrakis. 2019. Shinjuku: Preemptive
scheduling for 𝜇second-scale tail latency. In 16th USENIX Symposium
on Networked Systems Design and Implementation (NSDI 19). 345–360.

[29] Kostis Kaffes, Jack Tigar Humphries, David Mazières, and Christos
Kozyrakis. 2021. Syrup: User-Defined Scheduling Across the Stack.
In Proceedings of the ACM SIGOPS 28th Symposium on Operating
Systems Principles (Virtual Event, Germany) (SOSP ’21). Association
for Computing Machinery, New York, NY, USA, 605–620. https:
//doi.org/10.1145/3477132.3483548

[30] Qiang Li, Qiao Xiang, Yuxin Wang, Haohao Song, Ridi Wen, Wenhui
Yao, Yuanyuan Dong, Shuqi Zhao, Shuo Huang, Zhaosheng Zhu,
Huayong Wang, Shanyang Liu, Lulu Chen, Zhiwu Wu, Haonan Qiu,
Derui Liu, Gexiao Tian, Chao Han, Shaozong Liu, Yaohui Wu, Zicheng
Luo, Yuchao Shao, Junping Wu, Zheng Cao, Zhongjie Wu, Jiaji Zhu,
Jinbo Wu, Jiwu Shu, and Jiesheng Wu. 2023. More Than Capacity:
Performance-oriented Evolution of Pangu in Alibaba. In 21st USENIX
Conference on File and Storage Technologies (FAST 23). USENIX
Association, Santa Clara, CA, 331–346. https://www.usenix.org/
conference/fast23/presentation/li-qiang-deployed

[31] Hyeontaek Lim, Dongsu Han, David G. Andersen, and Michael Kamin-
sky. 2014. MICA: A Holistic Approach to Fast in-Memory Key-Value
Storage. In Proceedings of the 11th USENIX Conference on Networked
Systems Design and Implementation (Seattle, WA) (NSDI’14). USENIX
Association, USA, 429–444.

[32] Jiaxin Lin, Adney Cardoza, Tarannum Khan, Yeonju Ro, Brent E.
Stephens, Hassan Wassel, and Aditya Akella. 2023. RingLeader:
Efficiently Offloading Intra-Server Orchestration to NICs. In 20th
USENIX Symposium on Networked Systems Design and Implementation
(NSDI 23). USENIX Association, Boston, MA, 1293–1308. https:
//www.usenix.org/conference/nsdi23/presentation/lin

[33] James Litton, Anjo Vahldiek-Oberwagner, Eslam Elnikety, Deepak Garg,
Bobby Bhattacharjee, and Peter Druschel. 2016. Light-Weight Contexts:
An OS Abstraction for Safety and Performance. In Proceedings of the
12th USENIX Conference on Operating Systems Design and Implemen-
tation (Savannah, GA, USA) (OSDI’16). USENIX Association, USA,
49–64.

[34] Michael Marty, Marc de Kruijf, Jacob Adriaens, Christopher Alfeld,
Sean Bauer, Carlo Contavalli, Michael Dalton, Nandita Dukkipati,
William C. Evans, Steve Gribble, Nicholas Kidd, Roman Kononov,
Gautam Kumar, Carl Mauer, Emily Musick, Lena Olson, Erik Rubow,
Michael Ryan, Kevin Springborn, Paul Turner, Valas Valancius, Xi
Wang, and Amin Vahdat. 2019. Snap: A Microkernel Approach to
Host Networking. In Proceedings of the 27th ACM Symposium on
Operating Systems Principles (Huntsville, Ontario, Canada) (SOSP ’19).
Association for Computing Machinery, New York, NY, USA, 399–413.
https://doi.org/10.1145/3341301.3359657

[35] Sarah McClure, Amy Ousterhout, Scott Shenker, and Sylvia Ratnasamy.
2022. Efficient scheduling policies for {Microsecond-Scale} tasks. In
19th USENIX Symposium on Networked Systems Design and Implemen-
tation (NSDI 22). 1–18.

[36] Sohil Mehta. [n. d.]. User Interrupts – A faster way to sig-
nal. https://lpc.events/event/11/contributions/985/attachments/756/
1417/User_Interrupts_LPC_2021.pdf.

[37] Rui Miao, Lingjun Zhu, Shu Ma, Kun Qian, Shujun Zhuang, Bo Li,
Shuguang Cheng, Jiaqi Gao, Yan Zhuang, Pengcheng Zhang, Rong
Liu, Chao Shi, Binzhang Fu, Jiaji Zhu, Jiesheng Wu, Dennis Cai, and

Hongqiang Harry Liu. 2022. From Luna to Solar: The Evolutions of
the Compute-to-Storage Networks in Alibaba Cloud. In Proceedings
of the ACM SIGCOMM 2022 Conference (Amsterdam, Netherlands)
(SIGCOMM ’22). Association for Computing Machinery, New York,
NY, USA, 753–766. https://doi.org/10.1145/3544216.3544238

[38] Maxim Naumov, Dheevatsa Mudigere, Hao-Jun Michael Shi, Jianyu
Huang, Narayanan Sundaraman, Jongsoo Park, Xiaodong Wang, Udit
Gupta, Carole-Jean Wu, Alisson G. Azzolini, Dmytro Dzhulgakov,
Andrey Mallevich, Ilia Cherniavskii, Yinghai Lu, Raghuraman Kr-
ishnamoorthi, Ansha Yu, Volodymyr Kondratenko, Stephanie Pereira,
Xianjie Chen, Wenlin Chen, Vijay Rao, Bill Jia, Liang Xiong, and
Misha Smelyanskiy. 2019. Deep Learning Recommendation Model for
Personalization and Recommendation Systems. CoRR abs/1906.00091
(2019). https://arxiv.org/abs/1906.00091

[39] Amy Ousterhout, Joshua Fried, Jonathan Behrens, Adam Belay, and
Hari Balakrishnan. 2019. Shenango: Achieving High CPU Efficiency for
Latency-sensitive Datacenter Workloads.. In NSDI, Vol. 19. 361–378.

[40] John Ousterhout, Arjun Gopalan, Ashish Gupta, Ankita Kejriwal,
Collin Lee, Behnam Montazeri, Diego Ongaro, Seo Jin Park, Henry
Qin, Mendel Rosenblum, Stephen Rumble, Ryan Stutsman, and Stephen
Yang. 2015. The RAMCloud Storage System. ACM Trans. Comput. Syst.
33, 3, Article 7 (aug 2015), 55 pages. https://doi.org/10.1145/2806887

[41] Soyeon Park, Sangho Lee, Wen Xu, Hyungon Moon, and Taesoo Kim.
2019. Libmpk: Software Abstraction for Intel Memory Protection Keys
(Intel MPK) (USENIX ATC ’19). USENIX Association, USA, 241–254.

[42] Henry Qin, Qian Li, Jacqueline Speiser, Peter Kraft, and John Ousterhout.
2018. Arachne: Core-Aware Thread Management. In Proceedings
of the 13th USENIX Conference on Operating Systems Design and
Implementation (Carlsbad, CA, USA) (OSDI’18). USENIX Association,
USA, 145–160.

[43] Zhenyuan Ruan, Seo Jin Park, Marcos K. Aguilera, Adam Belay,
and Malte Schwarzkopf. 2023. Nu: Achieving Microsecond-Scale
Resource Fungibility with Logical Processes. In 20th USENIX Sym-
posium on Networked Systems Design and Implementation (NSDI 23).
USENIX Association, Boston, MA, 1409–1427. https://www.usenix.
org/conference/nsdi23/presentation/ruan

[44] Alexander Rucker, Muhammad Shahbaz, Tushar Swamy, and Kunle
Olukotun. 2019. Elastic RSS: Co-Scheduling Packets and Cores Using
Programmable NICs. In Proceedings of the 3rd Asia-Pacific Workshop
on Networking 2019 (Beijing, China) (APNet ’19). Association for
Computing Machinery, New York, NY, USA, 71–77. https://doi.org/
10.1145/3343180.3343184

[45] Vasily A. Sartakov, Lluís Vilanova, and Peter Pietzuch. 2021. CubicleOS:
A Library OS with Software Componentisation for Practical Isolation. In
Proceedings of the 26th ACM International Conference on Architectural
Support for Programming Languages and Operating Systems (Virtual,
USA) (ASPLOS ’21). Association for Computing Machinery, New York,
NY, USA, 546–558. https://doi.org/10.1145/3445814.3446731

[46] David Schrammel, Samuel Weiser, Richard Sadek, and Stefan Mangard.
2022. Jenny: Securing Syscalls for PKU-based Memory Isolation
Systems. In 31st USENIX Security Symposium (USENIX Security 22).
936–952.

[47] Hamed Seyedroudbari, Srikar Vanavasam, and Alexandros Daglis. 2023.
Turbo: SmartNIC-enabled Dynamic Load Balancing of µs-scale RPCs.
In 2023 IEEE International Symposium on High-Performance Computer
Architecture (HPCA). 1045–1058. https://doi.org/10.1109/HPCA56546.
2023.10071135

[48] Stephen Tu, Wenting Zheng, Eddie Kohler, Barbara Liskov, and Samuel
Madden. 2013. Speedy Transactions in Multicore In-Memory Databases.
In Proceedings of the Twenty-Fourth ACM Symposium on Operating
Systems Principles (Farminton, Pennsylvania) (SOSP ’13). Association
for Computing Machinery, New York, NY, USA, 18–32. https://doi.
org/10.1145/2517349.2522713

294

https://www.intel.com/content/www/us/en/developer/articles/technical/software-security-guidance/technical-documentation/analysis-speculative-execution-side-channels.html
https://doi.org/10.1145/3542929.3563459
https://doi.org/10.1145/3542929.3563459
https://doi.org/10.1145/3477132.3483548
https://doi.org/10.1145/3477132.3483548
https://www.usenix.org/conference/fast23/presentation/li-qiang-deployed
https://www.usenix.org/conference/fast23/presentation/li-qiang-deployed
https://www.usenix.org/conference/nsdi23/presentation/lin
https://www.usenix.org/conference/nsdi23/presentation/lin
https://doi.org/10.1145/3341301.3359657
https://lpc.events/event/11/contributions/985/attachments/756/1417/User_Interrupts_LPC_2021.pdf
https://lpc.events/event/11/contributions/985/attachments/756/1417/User_Interrupts_LPC_2021.pdf
https://doi.org/10.1145/3544216.3544238
https://arxiv.org/abs/1906.00091
https://doi.org/10.1145/2806887
https://www.usenix.org/conference/nsdi23/presentation/ruan
https://www.usenix.org/conference/nsdi23/presentation/ruan
https://doi.org/10.1145/3343180.3343184
https://doi.org/10.1145/3343180.3343184
https://doi.org/10.1145/3445814.3446731
https://doi.org/10.1109/HPCA56546.2023.10071135
https://doi.org/10.1109/HPCA56546.2023.10071135
https://doi.org/10.1145/2517349.2522713
https://doi.org/10.1145/2517349.2522713

[49] Anjo Vahldiek-Oberwagner, Eslam Elnikety, Nuno O Duarte, Michael
Sammler, Peter Druschel, and Deepak Garg. 2019. ERIM: Secure,
Efficient In-process Isolation with Protection Keys (MPK). In 28th
USENIX Security Symposium (USENIX Security 19). 1221–1238.

[50] Abhishek Verma, Luis Pedrosa, Madhukar Korupolu, David Oppen-
heimer, Eric Tune, and John Wilkes. 2015. Large-Scale Cluster Man-
agement at Google with Borg. In Proceedings of the Tenth European
Conference on Computer Systems (Bordeaux, France) (EuroSys ’15).
Association for Computing Machinery, New York, NY, USA, Article
18, 17 pages. https://doi.org/10.1145/2741948.2741964

[51] Andrew Waterman1 and Krste Asanović. 2023. The RISC-V Instruction
Set Manua, Volume I: User-Level ISA, Document Version 2.2. https:
//riscv.org/wp-content/uploads/2017/05/riscv-spec-v2.2.pdf.

[52] Yongkang Zhang, Yinghao Yu, Wei Wang, Qiukai Chen, Jie Wu,
Zuowei Zhang, Jiang Zhong, Tianchen Ding, Qizhen Weng, Lingyun
Yang, Cheng Wang, Jian He, Guodong Yang, and Liping Zhang. 2022.
Workload Consolidation in Alibaba Clusters: The Good, the Bad, and
the Ugly. In Proceedings of the 13th Symposium on Cloud Computing
(San Francisco, California) (SoCC ’22). Association for Computing
Machinery, New York, NY, USA, 210–225. https://doi.org/10.1145/
3542929.3563465

295

https://doi.org/10.1145/2741948.2741964
https://riscv.org/wp-content/uploads/2017/05/riscv-spec-v2.2.pdf
https://riscv.org/wp-content/uploads/2017/05/riscv-spec-v2.2.pdf
https://doi.org/10.1145/3542929.3563465
https://doi.org/10.1145/3542929.3563465

	Abstract
	1 Introduction
	2 Motivation and Background
	2.1 Cost of Application Colocation
	2.2 User-space Interrupt
	2.3 Memory Protection Key

	3 Challenges and Our Approach
	3.1 Our Approach

	4 uProcess Abstraction
	4.1 Address Space and Protection
	4.2 Call Gate
	4.3 Signal Handling
	4.4 Context Switch
	4.5 Scheduler

	5 Vessel Implementation
	5.1 Vessel Manager
	5.2 Vessel Runtime
	5.3 Vessel and uProcess Semantics and Limitations

	6 Evaluation
	6.1 Experimental Setup
	6.2 Resource Efficiency
	6.3 Microbenchmarks

	7 Related Work
	8 Conclusion
	References

